Inactivation of Viruses An Introduction to the Series by Gail Sofer

uring the past five years or so, FDA has been more stringent about virus clearance studies. Although rare, cases exist of viral contamination of cell substrates, production facilities, and products. As a result, demand for more effective initial virus clearance studies is increasing. The intent is, of course, to ensure patient safety. The European Union draft on the manufacture of products intended for clinical trials states that "Virus inactivation/removal and removal of other impurities of biological origin should be no less rigorous than for licensed products" (1).

Applying a virus inactivation method during production can alleviate some concerns about potentially infectious, adventitious, or endogenous agents. Virus inactivation processes are usually less susceptible to minor changes than removal steps are — that is, virus inactivation processes are said to be robust. FDA's "Points to Consider" on monoclonal antibody products for human use says that robust viral inactivation processes include solvent/ detergent, low pH, and heat treatments (2).

Controlling Critical Parameters

Although virus inactivation treatments are often robust, many factors have the potential to affect a method's efficiency. The guideline from the International Conference on Harmonisation (ICH) states, "Virus inactivation is not a simple, firstorder reaction and is usually more complex, with a fast 'phase 1' and a slow 'phase 2''' (3). Time is an obvious critical parameters to control during virus inactivation. There are many other variables that are critical to ensure that virus inactivation is, indeed, robust.

- Virus stock and titer are important elements that can influence the log reduction result from a viral inactivation study.
- Variability in the test article can profoundly influence the outcome and can inhibit or interfere with an assay system. Ranges for impurities, protein concentrations, and additives should be defined so that they don't affect log reduction values.
- **Temperature** usually has a significant effect on inactivation kinetics.
- Scale-down accuracy is another important element when designing virus inactivation studies that will need to provide reliable data when translated to manufacturing scale.

Variability Can Affect Results

Viruses, treatments, and products are idiosyncratic — each requires specific experience, evaluation, and testing to understand the range of acceptable results and the critical parameters that can affect those data. Some examples of the effects of variability include the following.

pH. When evaluating the effectiveness of low pH on virus inactivation, accurate scale-down and mixing are critical parameters; for instance, comparing an overhead impeller stirrer to a stirring bar can be problematic because inactivation by pH can vary with different stirring efficiencies, and shear forces can affect the inactivation of some viruses. The consistency of the test article can be an important variable. Both the pH and treatment time must be monitored with suitably calibrated equipment. In one study, pH 7.5 was found to be more effective than pH 6.4 for virus inactivation in a 5% plasma protein solution, but for a 5% albumin solution pH 6.4 was more effective than pH 6.9 or pH 7.4. In this case, the excipients were found to influence the pH inactivation (4).

Heat. Virus inactivation by heat can be effective. Monitoring the temperature and treatement time is essential to ensuring confidence in the validity of a viral inactivation study. For dry heat, moisture content is also critical. Dry heat has been added to some processes to enhance viral safety. However, for some viruses (such as porcine parvovirus), consistent survival after lyophilization can occur even at temperatures between 95°C and 100°C (5).

Solvents/detergents. Several references in the literature describe the many variations that are observed when detergents are applied as viral inactivation agents. Solvent/detergent methods certainly enhance the confidence in the safety of plasma products, but some detergents alone are not very effective. Detergent concentration and the

type of detergent used can alter the effectiveness of the inactivation. The contact time, temperature, and test article properties are all important parameters.

On the Horizon

The ICH guideline on viral safety says, "For each production step assessed, the possible mechanism of loss of viral infectivity should be described with regard to whether it is due to inactivation or removal." Today, polymerase chain reaction (PCR) tests combined with infectivity assays enable us to better understand viral clearance mechanisms (see Table 1). Technology will, hopefully, help us understand virus stabilization effects of resins and filters that might affect overall safety assessments.

New inactivation methods are being investigated to further enhance viral safety. The motivation behind these investigations is concern about bioterrorism and the rapid transport of viral agents by the traveling public. Conversely, the more we can detect, the more concern is raised, and sensitive methods, such as PCR, allow detection of viruses that might not present a safety risk. New cell culture methods for specific viral agents and more sensitive detection methods provide us with better technologies for assessing and understanding virus inactivation.

References

- Enterprise Directorate-General, Good Manufacturing Practices: Manufacture of Investigational Medicinal Products, Vol. 4, Annex 13, Draft 1, (European Commission, Brussels, Belgium, November 2001).
- (2) CBER, Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use (FDA, Rockville, MD, 28 February 1997).
- (3) ICH Steering Committee, ICH Harmonised Tripartite Guideline: Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin (ICH, Geneva, 5 March 1997).
- (4) Rosenthal, S. et al., "Pasteurization of Cohn Fraction V Products: Effect of pH on Viral Inactivation," poster presentation at the PDA/FDA Viral Clearance Forum, Bethesda, MD, October 2001 and personal communication with M. Korneyeva, Bayer Corporation.
- (5) BioReliance databases (BioReliance Corporation, Rockville, MD). **BPI**

Table 1. The inactivation of X-Mulv at a low pH and an infectivity assay (TCID₅₀) with quantitative PCR (Q-PCR) clears the infectivity, but the viral sequence remains.

Treatment for Various Lengths of Time	Total Virus (log ₁₀)		Clearance (log ₁₀)	
	TCID ₅₀	Q-PCR	TCID ₅₀	Q-PCR
Low pH, T= 0 min.	5.71±0.24	$10.40 {\pm} 0.09$		
Low pH, T=30 min.	≤3.67	$10.29 {\pm} 0.08$		
Low pH, T=60 min.	≤2.66	$10.23 {\pm} 0.03$	≥4.39±0.32	$0.17 {\pm} 0.03$

Virus Charts. All enveloped and nonenveloped viruses in this series, with abbreviations, and reference numbers that refer to that virus (Part #s are in color^a)

Namo	Enveloped Virus	Abbreviation	Doforonoal
Name		Appreviation	Reference ^a
Avian influen		BHV	8
Bovine herpe	nodeficiency virus	BIV	19,23,50, 5,6,18,20 5
Bovine leuke		BLV	46
Bovine viral c		BVDV	15, 20,22,23,25,26, 12,19,23,27,
			29,30,39,45,50,53,58,59, 5,18,20,
		01.11/	23,26,32,38,43, <mark>8,13,14,17,46, 27</mark>
Chikungunha Classical swi		CHV	20
Cytomegalov		CMV	5 15.20, 7,20,23,25,26,37–39, 21,22
Cytomegalov	iiuo	ONIV	32,46,47, 41, 18,47, 7
Dengue virus			36
Duck hepatiti	s B virus	DHBV	15, 7,20,23,25,26,37–39 , 21,22,46
–			47,53, 11, 16
	ne encephalomyelitis	ECT	46 22
Equine arteri	rus (poxvirus) is virus	EAV	18
Feline leuken		FeLV	9,18, 19 , 17
Feline sarcor		FeSV	6.7
Foot and more	uth disease virus	FMD	17,41,42,46
	e leukemia virus	Fr-MuLV	7
Hepatitis B vi		HBV	38 , 15,46–48,52–56, 17,22, 1 4
Hepatitis C vi		HCV	15,20,46,47,52–56, 8,17,22,43
Hepatitis D vi Herpes simpl		HDV HSV	47 2–5,22, 20,23,30,41,42, 5,27,30,
nerpes simpl	ex virus	H3V	2-5,22, 20,23,30,41,42, 5,27,30, 32,36,37,46-48,56, 5,6,9,12,23,35,
			41, 14,18,26
Hog cholera	/irus		11
Human coror			31
Human immu	nodeficiency virus	HIV	2,6,10–19,23–25, 6,14–17,19,20 ,
			21,23–26,28–33,39 , 5,9,12,15,
			17–20,23,25,27,30–33,36,37,
			41-47, 50-59, 4-8,10,11,16,18,
			20–24,27,33,38,41,42, 6,7,14,15, 18–21,39,44, 9,11,13,18,23,31,33
Infectious bro	nchitis virus		8
	ngotracheitis virus		8
Influenza			5,6, 44
Junin virus			19
Lassa fever v			44
Measles virus		MV	33,37
Mink cell focu	is virus	MCF	22
Mumps Murine leuke	mia virus	MuLV	20, 47, 2 7
Newcastle di		NUCLV	46, 8
Parainfluenza		PI	47, 8,17,22
Pichinde viru			44
Pseudorabies	s virus	PRV	16, 4,5,22,30,35,36,42, 6,12,17,
			28,23,25,36,37,45,46,51,58,59,
Doughan	IV apatronic		18,26,27,38,39, <mark>8,24,46, 27</mark>
Respiratory s	LV, ecotropic	RSV	47 7,38, 32,33
Retrovirus	yndyllai virus	1.5 V	6, 14
Rous sarcom	a virus		6.7
Semliki fores		SFV	5, 5,6,11,18,20,35,38–41, 16
Sendai virus		SEN	47,56
	nodeficiency virus	SIV	14, 20 , 5,6,18,20,27, 18 ,20,31
Simian sarco	ma virus	SSV	6,7
Sindbis virus		SIN	16, 6,14,16,17,27,28 , 5,9,10,19,20,
Suid herpes	virus	SHV	36,45–48,50–54,56,57,60, 5,6,27, 5,6,9,20
	lar disease virus	SVDV	11, 20
	encephalitis virus	TBEV	17,18,23,25,27,29,30, 23
Vaccinia virus		-	21,22, 9 , 5,20,32, 35, 33
Venezuelan e	equine encephalomyelitis	VEE	47,56, 43
Vesicular sto		VSV	7,25, 4–8,10–14,16,17,19,22,23,
			27-30,33-36,40,41, 5,12,20,32,
			44-47,49,50,52-54, 56,57, 5,6,11,
			12,17,18,20,27–31,33,34,40,41,12
Viena virue			
Visna virus Xenotropic m	urine leukemia virus	Xmul V	32, 14,20,26,29,35,46, 47, 22–24
	urine leukemia virus <i>v</i> irus	XmuLV YFV	32, 14,20,26,29,35,46, 47, 22–24 27,29,30, 23

<u>Nonenveloped Virus</u> Name Abbreviation Reference ^a							
Adenovirus	ADV	4–6,11,47,48, 31					
Avian reovirus Baculovirus		8 34					
Blue tongue virus	BTV	17, 8,11,46					
Bovine parvovirus	BPV	5,12, 8,17					
Calici virus Canine adenoviru	s	5,6,11,18 10					
Coxsackie virus	CV	36,37, <mark>31</mark>					
Canine parvovirus Echovirus	S CPV	5,7, 27 17					
Enteroviruses		17					
Human rhinovirus	ECHO EMC	20					
Encephalomyo- carditis virus	EIVIC	6,14 ,19,23, 19,23,44,5,6,					
		11,26,27,28,					
Equine rhinovirus	ERV	33,34 18,24,					
Feline calicivirus	FCV	19,20, <mark>22</mark>					
Hepatitis A virus	HAV	6,7,11–13,16, 17,22–27,36–					
		40,17–20,23,					
		25,27,30–33,					
		36,37,41–47, 50–59, 5,11,					
		33,34, 12,40. 40, 21,33					
Infectious bovine	IBRV	40, 21,33 48,17,22,46					
rhinotracheitis v	irus						
Infectious bursal disease virus		8					
Lambda phage		25					
Minute virus of mi Murine encephalo		17,23,25, 5,6,18,20					
myelitis virus							
Murine minute vir Parvovirus	us MMV	9,11,16 34					
Parvovirus B19	PV-B19	8,11,28,29,36					
Picornavirus Poliovirus		34 2–5,8,15,16,					
		41,43, 13,24,					
		27,30,32,36, 37,5,6,23,35,					
		2 ,15,17,31,33					
Porcine circovirus Porcine enteroviru		12 13					
Porcine parvoviru		22 , 6,19,32,5,					
		6,11,18,20,					
		26,33,34,10, 8,13,17,34,46					
Reovirus	Reo	12 5,30, <mark>8,17</mark>					
Rotavirus Simian virus	SV-40	8, 30,45 22, 12,36,5,6,					
		11,18,20					
^a References are color-coded to the Part							
number in this series, which also provides information on the test article: Part 1: Skin,							
Bone, and Cells (References on page 10);							

Part 2: Red Blood Cells and Platelets (References on page 14); Part 3a: Plasma and Plasma Products (Heat and Solvent/Detergent Treatments) (References on page 23); Part 3b is Plasma and Plasma Products (Treatments Other than Heat and Solvent/Detergent Treatments) (References on page 28); Part 4 is Culture Media, Biotechnology Products, and Vaccines (References on page 33); Part 5 is Disinfection (References on page 60), har ons Fourth derivative UV spectroscopy. CLight scattering and ultracentrifugation. Western blot, SDS-PAGE gels (silver stained).