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Most particle sizing instruments that may be con-
sidered particle counters measure particles one at 
a time and populate a frequency histogram with 
the results. There are two common types of histo-

grams: those that are arithmetically spaced and those that 
are geometrically spaced. Any histogram can be described 
using a range, the number of bins, and a binning constant. 
The binning constant may be additive (e.g., an arithmeti-
cally spaced histogram), or it may be multiplicative (e.g., a 
geometrically spaced histogram).

Arithmetically spaced histograms are the most common 
and are described in any course on statistics, one example 
being the normal or Gaussian distribution. Geometrically 
spaced histograms occur very often in nature, particularly 
in the field of fine particle characterization. An example 
of a geometrically spaced histogram is that of a lognormal 
distribution. The statistical characterization and proper-
ties of geometrically spaced histograms are taught far less 
often in general statistics courses. The theoretical process of 
generating a statistically robust, geometrically spaced his-
togram is mentioned in the literature, but the algorithms to 
do so are absent.

Instruments that measure particle size distribution work 
on a wide array of technologies and underlying concepts. 
These underlying concepts often decide the type of weight-
ing by which the data will be reported. As some examples, 
sieving will produce a mass-weighted particle size distribu-
tion (1), laser diffraction will produce a volume-weighted 
particle size distribution (2), and dynamic light scattering 
(DLS) will produce an intensity-weighted particle size dis-
tribution (3). Another common class of instruments are par-
ticle counters, which produce a number-weighted particle 
size distribution.

Particle counters are somewhat unique in that they mea-
sure several particles in serial succession, one at a time. By 
contrast, all other technologies will measure a given prop-
erty of an ensemble of particles at the same time then relate 
that property to particle size. Not only are counters able 

This work and derivation yielded two equations 
of note for a geometrically spaced histogram, 
one for the binning constant, cb, and one for 
the number of bins, k. With these equations, a 
conservative histogram may be constructed that 
has minimal effect on the accuracy and peak width 
of a number-weighted particle size distribution. 
Examples including a standard reference material 
and a real sample are given to show the effects 
of using these equations. Additionally, a sample 
of randomly distributed values is also analyzed, 
both with a traditional algorithm that lead to a 
discontinuous, discrete distribution, an effect 
known as over-binning, and the proposed 
equations, which lead to a continuous distribution.
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to give a particle size distribution with the highest level of 
resolution, but they can sometimes offer information on 
particle shape as well as concentration. Particle counters, 
like most other platforms, are comprised of several under-
lying technologies. The three most common particle coun-
ters are those that rely on images (e.g., dynamic or static 
image analysis) (4, 5); those that produce a signal through 
the process of blocking light (e.g., light obscuration or single 
particle optical sensing [SPOS]) (6, 7); and those that make 
use of the electrical sensing zone method (8), also known as 
the Coulter principle.

Because each particle is individually measured, the num-
ber (or frequency) of observed particles of a given size range 
can be incrementally measured. This is the basis for the con-
struction of a frequency histogram. The y-axis is typically 
used for the number of particles measured, a frequency, or 
probability value.  The x-axis is divided into particle size 
ranges, often referred to as bins or class intervals.

The number of bins and the subsequent spacing between 
bins used in the construction of the frequency histogram 
varies depending on the instrument software. For instance, 
the Malvern Morphologi G3, a static image analysis instru-
ment, will typically use 1000 to 2000 bins as a default. The 
Particle Sizing Systems Accusizer 770, an SPOS instrument, 
can use 64, 128, or 256 bins, with 128 bins being the software 
default. The Particle Sizing Systems Accusizer 780, another 
SPOS instrument, can use 128, 256, 512, or 1024 bins, with 
256 bins being the software default. The Micromeritics Elzone 
II and the Beckman Coulter Multisizer 4, both of which use 
the Coulter principle, utilize 300 and 400 bins, respectively. 

The use of more bins over a given fixed range will often 
result in higher resolution, but resolution gained in this 
manner does have a practical limit. The limit occurs when 
the difference between two bins becomes less than the reso-
lution of the instrument. This phenomenon is called “over-
binning” and is well documented for histograms that are 
constructed with arithmetic spacing.

One of the results of over-binning is the distribution 
becomes non-continuous and polymodal. Another way of 
saying this is the data are no longer continuous, but rather 
become discrete. In most traditional statistical treatments 
of continuous data, there is the assumption the data are nor-
mally distributed. The normal distribution, also known as 
a Gaussian distribution, is symmetric about its mean and 
monomodal (9). Once the data become discrete, more ad-
vanced statistical analysis treatments are available (e.g., like-
lihood testing, logistic modeling, etc.) (10), but because the 
underlying assumptions of traditional statistics are false for 
discrete data, the treatment of discrete data by traditional 
techniques is not applicable. 

As previously mentioned, over-binning is well docu-
mented for histograms that are constructed with arithmetic 
spacing; however, there is virtually no solution proposed 
for histograms that are constructed with geometric spacing 
such as particle size distribution data. Most particle size dis-

tribution data are lognormal. Thus, they are typically pre-
sented using a semi-log plot with the x-axis being divided 
in a geometric manner. 

Presented here is a mathematically derived algorithm 
that may be used to decide the proper number of bins to 
use based on the number of particles measured, the range 
of the data, the standard deviation, and the desired con-
fidence level. This algorithm should give the best resolu-
tion possible without forcing the data to become discrete. 
To test the validity of the algorithm, two objectives were 
proposed: 

•	Study the effects of histogram binning on the accuracy 
and precision of particle sizing measurements.

•	Test the hypothesis whether the proposed technique 
would decrease the probability of over-binning.

Review of literature
The classical frequency histogram is formed by constructing 
a set of non-overlapping intervals, called bins, and count-
ing the number of points in each bin. Again, by classical 
theory, the bins all should be evenly spaced (i.e., arithmeti-
cally spaced). The first work in the literature to discuss the 
construction of histograms was by Sturges (11). Sturges as-
sumed a binomial distribution could be used as a model 
of an optimally constructed histogram with appropriately 
scaled data. This led to what is known as Sturges’ rule where 
k is the number of bins and n is the total sample size (see 
Equation 1).

nk 2log1+= 	 [Eq. 1] 

Sturges’ rule has since become the widely recommended 
rule in most statistics texts and often is used in statistical 
packages as a default. One of the assumptions of Sturges’ 
rule is the data follow a perfectly shaped Gaussian distribu-
tion (i.e., the distribution has no skewness or kurtosis). To 
accommodate skewness, Doane (12) proposed increasing the 
number of bins as a function of the standardized skewness 
coefficient, γ, as shown in Equation 2.
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	 [Eq. 2]

Both Sturges’ rule and Doane’s rule are known to lead to 
oversmoothed histograms, especially for large sample sizes 
(13, 14). To minimize the mean square error across the dis-
tribution function, Scott (15) derived an equation (see Equa-
tion 3) to find the best width of each bin, h, rather than the 
number of bins, k, which is a simple function of the standard 
deviation of the distribution, σ. 
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This was then improved upon by Freedman and Diaconis (16)  
who derived a more robust equation (see Equation 4) that re-
placed σ with a multiple of the interquartile range (IQ). Note 
the interquartile range is the difference, X75-X25.
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	 [Eq. 4]

Terrell (17) derived a similar relationship (see Equation 5).

h 2.603
n  
IQ

= 3
	 [Eq. 5] 

Sturges’ rule, Scott’s rule, and the Freedman-Diaconis 
rule constitute nearly all references in the literature and 
textbooks. In that order, Sturges’ rule is the least stringent 
and the Freedman-Diaconis rule is the most stringent. Stur-
ges’ rule requires approximately 64% of the number of bins 
as Scott’s Rule, which requires approximately 74% of the 
number of bins as the Freedman-Diaconis rule.

Keeping in mind one of the first assumptions of all three 
rules was the bins should all be evenly spaced (i.e., arithmet-
ically spaced), Scott (15) proposed using the t-distribution 
as a reference density to change the normal rule when the 
data are skewed or heavily tailed. Scott’s work derived both a 
skewness factor and a kurtosis factor by which either Scott’s 
rule or the Freedman-Diaconis rule should be multiplied.

Derivation
In an arithmetic progression, the number of bins, k, should 
be related to the range of the data (b-a) and the minimum 
bin width, h (see Equation 6). 

h
abk =  

	 [Eq. 6] 

Furthermore, the area, A, can be calculated as a Riemann 
sum over the range, b-a, assuming the frequency at each 
point to be yi as shown in Equation 7.
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	 [Eq. 7]

In a geometric progression, which may be used to describe 
a lognormal distribution, the area also can be calculated as a 
Riemann sum if cb is the binning constant used to construct 
the geometric progression of the x-axis (see Equation 8).
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	 [Eq. 8] 

Thus, the width of the first bin, which is also the width 
of the smallest bin, h, is a function of the binning constant 
and the starting value, a (see Equation 9).

)1(= bcah  	 [Eq. 9] 

In statistics, a rearrangement of the t-test yields Equation 10 
in which the minimum number of samples, n, is a function 
of the statistical confidence level, zα/2, the standard devia-
tion, σ, and the margin of error, ω. The margin of error also 
can be thought of as the smallest difference in measure-
ments that is considered real or the maximum difference 
between the observed sample mean and the value of the 
population mean. At the 95% confidence level, if one as-
sumes n to be sufficiently large, then zα/2 = 1.96.
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	 [Eq. 10]

Substitute h for ω as in Equation 11:
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	 [Eq. 11]

Solve for cb (see Equation 12):

196.1
+
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	 [Eq. 12]

To solve for the number of bins, k, the range of values, b-a, 
can be expressed as a sum of all the individual bin widths, 
as shown in Equation 13.
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	 [Eq. 13]

Thus, in solving for k (Equations 14 and 15),

( )
a
abckb += 1

	 [Eq. 14]
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Results and discussion
The feasibility of this process, which uses Equations 12 and 15,  
was initially applied to data from a static image analysis 
system(Malvern Morphologi G3). If successful, future in-
vestigations may find the applicability to other technologies 
and instrumentation. Two sets of data, one representing the 
analysis of a reference standard and the other representing an 
example sample, were chosen. The example sample or “real-
world” sample was chosen because the plot of the data on a 
linear-linear scale was obviously lognormal in shape.  The 
reference standard data were exported to Microsoft Excel, and 
the descriptive statistics were completed as given in Table I.

Using Equation 15, assuming the 95% confidence level, the 
number of bins, k = 108. The range was increased 10% above 
and below the maximum and minimum, respectively, so 
the data would not exceed the minimum and maximum 
bin sizes. Thus, a set of geometrically spaced bins was cre-
ated with a minimum value of 5.679 µm, using 108 bins, to 
a maximum bin size of 160.089 µm. This was done using 
a geometric multiplier, cb, of 1.031399 as calculated using 
Equation 12.

By comparison, a density histogram was also created 
using the data and the default bin choices: 1000 bins cover-
ing a range from 0.5 µ to 1000 µm. This was done using a 
geometric multiplier of 1.007638. The corresponding plots 
were overlaid in Figure 1. As displayed in Figure 1, the over-
all shape of the distribution using the default or original 
bins was a distribution with a mode around 40 µm and a 
shoulder with a mode around 70 µm. The distribution, on a 
semi-log scale, did appear to have a fair degree of fronting or 
positive skewness. The distribution also may be described as 
jagged or non-smooth. The distribution using the proposed 
re-binning parameters was nearly identical to the original 
plot but may be described as less jagged or smoother.

One possible measurement of smoothness is the sec-
ond derivative of the data. The magnitude of the second 
derivative is proportional to the smoothness of the data. 
As shown in Table II, the mean absolute value of the second 
derivative of the originally binned data was 30.95. By com-
parison, the mean absolute value of the second derivative 
of the proposed binned data was 2.96, which was a ratio of 
10.45. There appeared to be a small bias of the mean in both 
the originally binned data and the proposed data of 1.41% 
and 2.72%, respectively. This was to be expected and was in 
line with theoretical errors associated with most approxi-
mation methods (e.g., Simpson’s method, Riemann sums, 
Trapezoidal method, etc.) (18).  For both sets of binned data, 
the standard deviation was biased low (underestimated) by 
approximately 19.2% and 17.6%, respectively. This was a 

considerable magnitude but was most likely explained by 
outliers in the raw data that may be lost in the averaging and 
smoothing processes associated with binning.

The example sample data were exported to Excel and 
the descriptive statistics were completed as given in Table 
III. Again, using Equation 15, assuming the 95% confidence 
level, the number of bins, k = 32. The range was increased 
10% above and below the maximum and minimum, respec-

Figure 1: Binning effects on a reference standard.

Table I: Descriptive statistics for the reference standard.
Descriptor Value

Mean 41.29

Standard deviation 15.76

Range 139.20

Maximum 145.51

Minimum 6.31

Count 30000

Table III: Descriptive statistics for the example sample.
Descriptor Value

Mean 4.55

Standard deviation 3.77

Range 32.56

Maximum 34.10

Minimum 1.54

Count 2373

Table II: Calculated statistics for the reference standard.

Raw 
data

Histogram 
data using 

original 
bins

Histogram data using 
proposed bins

Mean 41.29 41.87 42.41

Standard 
deviation

15.76 12.74 12.98

Mean d2y/dx2 n/a 30.95 2.96
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tively, so the data would not exceed the minimum and 
maximum bin sizes. 

Thus, a set of geometrically spaced bins was created 
with a minimum value of 1.38 µm, using 32 bins, with a 
maximum bin size of 38.52 µm. This was accomplished 
using a geometric multiplier, cb, of 1.109637 as calculated 
using Equation 12.

By comparison, a density histogram also was created 
using the data and the default bin choices: 1000 bins 
covering a range from 0.5 µm to 1000 µm. This was ac-
complished using a geometric multiplier of 1.007638. The 
corresponding plots were overlaid in Figure 2.

As displayed in Figure 2, the overall shape of the distri-
bution using the default or original bins was a monomodal 
distribution with a mode around 2.5 µm. The distribution, 
on a semi-log scale, did appear to have a significant degree 
of tailing or negative skewness. This negative skewness 
was obvious even in the semi-log plot presented as Figure 2. 
The distribution also may be described as jagged or non-
smooth. The distribution using the proposed re-binning 
parameters had the same general shape, but the mode was 
around 3.0 µm, and it was much smoother. 

As shown in Table IV, the mean absolute value of the sec-
ond derivative of the originally binned data was 4058.29. 
By comparison, the mean absolute value of the second de-
rivative of the proposed binned data was 73.57, which was 
a ratio of 55.2. There appeared to be a significant bias of 
the mean in both the originally binned data and the pro-
posed data of 32.5% and 28.5%, respectively. For both sets 
of binned data, the standard deviation was biased rather 
low (underestimated) by approximately 81.6%. This was a 
considerable magnitude, but was likely attributable to the 
extreme jaggedness of the originally binned data and the 
degree of skewness of the distribution.

To test the hypothesis whether the new binning 
technique would decrease the probability of overbinning 
in which the bins are separated by more resolution than 
the instrument is capable, a random set of data (n =10,000) 
was generated such that all data points were a factor of 
0.5 µm or n*0.5 µm apart where n is an integer. The 
randomly generated distribution had a mean of 32 µm and 
a standard deviation of 2 µm. The concept of the smallest 
change that is considered real, ω, was introduced with 
Equation 10. In the case of the Malvern Morphologi G3, ω 
is approximately 0.5 µm due to limitations imposed by 
optical microscopy (19).

The original number of 1000 bins was used with a mini-
mum size of 0.5 µm and a maximum size of 1000 µm with 
a cb = 1.007638. The difference between the bins closest to 
32 µm was found to be 32.103 µm - 31.860 µm = 0.243 µm, 
which was less than ω for the Malvern Morphologi G3. 

By comparison, using Equation 15, assuming the 95% 
confidence level, the number of bins, k = 22. Thus, a set 
of geometrically spaced bins was created with a minimum 
value of 22.95 µm, using 22 bins. This was done using 
a geometric multiplier, cb, of 1.03209 as calculated using 
Equation 12. Using this modified binning scheme, the 
difference between the bins closest to 32 µm was found 
to be 32.48433 µm - 31.47433 µm = 1.009997 µm, which 
was greater than ω for the Malvern Morphologi G3.

The distribution of the randomly generated numbers 
was then plotted in Excel. When using the traditional bin-
ning parameters, the 10,000 data points fell into several 
discontinuous bins as shown in Figure 3. Again, this is to be 
expected because the bin width was less than the resolu-
tion of the data, 0.5 µm. By comparison, the 10,000 data 
points fell within several continuous bins when the bin 

Figure 3: Random data binned with the traditional spacing.

Table IV: Calculated statistics for the example sample.

Raw 
data

Histogram 
data using 

original 
bins

Histogram data using 
proposed bins

Mean 4.55 3.07 3.25

Standard 
deviation

3.77 0.66 0.73

Mean d2y/dx2 n/a 4,058.29 73.57

Figure 2: Binning effects on the example sample.
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width was set using the proposed algorithms as shown in 
Figure 4, which is to be expected since the bin width was 
greater than the resolution of the data.

Conclusion
This original work and derivation yielded two equations 
of note, one for the binning constant, cb, (Equation 12) and 
one for the number of bins, k (Equation 15). With these 
equations, a histogram may be constructed that has mini-
mal effect on the accuracy and peak width compared to 
the default process. 

The histogram generated with these equations will be 
continuous, thus, can be treated using normal statistical 
models, software, and processes.

A histogram generated using these equations will also 
have the statistically maximum resolution allowed given 
the instrument, software, and underlying scientific prin-
ciples. Thus, the technology will be optimized to yield the 
most resolute data, which is a primary importance for a 
particle counter. 

It is possible given certain applications that this in-
crease in resolution may allow the instrument to be used 
to resolve monomers, dimers, trimers, etc., intact particles 
from fractured particles, partially milled lots from fully 
milled lots, etc.

In the example given, these algorithms led to a continu-
ous distribution (Figure 4) rather than the original discon-
tinuous distribution (Figure 3).

Once proven, typical statistical treatments could be 
used to calculate values (e.g., mean, median, mode, stan-
dard deviation, variance, standard error, skewness, kur-
tosis, etc.) as well as derived values from the integral or 
cumulative distribution plot. Furthermore, the resolution 
was optimized in such a way the minimum bin size was a 
scientifically supportable 0.975 µm rather than 0.243 µm. 

If this had been a real-world sample, there could exist the 
situation where a population with a mean diameter near  
1 µm should be contained within two or three bins, de-

pending on the standard deviation of the distribution. 
Given the optimal bin spacing of 0.975 µm, this would 
most likely be the case. 

If the traditional spacing were used, it is quite pos-
sible the same population would have been “resolved” 
into several discrete peaks, suggesting the sample were a 
mixture of several very narrowly distributed populations. 
The problem with this is the peaks would be considered 
independent populations even though the instrument is 
incapable of that level of resolution. 

A more statistical way to state this is the null hypoth-
esis that the distribution came from the same popula-
tion would be incorrectly determined to be false. This is 
known as a false negative result, also known as type II or 
β-error.  Through use of the derived equations, the prob-
ability of a type II error is minimized while maximizing 
the system resolution.
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Figure 4: Random data binned with the proposed algorithm.
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