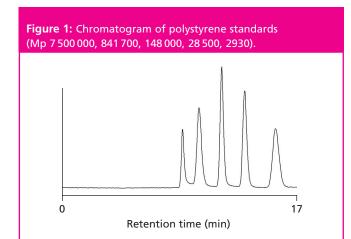
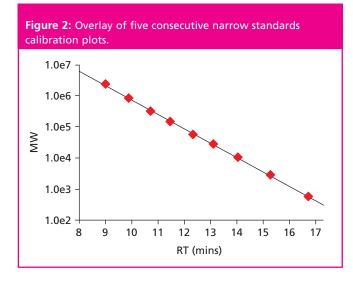
High Performance GPC Analysis for

Reliable Polymer Characterization


Elizabeth Meehan, Greg Saunders and Kevin Tribe,

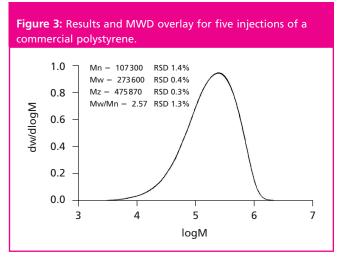

Polymer Laboratories Ltd, Church Stretton, Shropshire, UK.

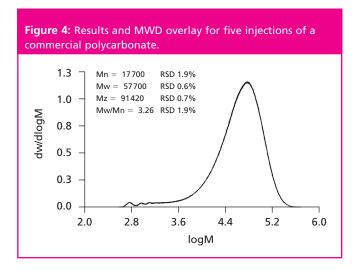
11

Introduction

Both synthetic and natural polymers have application across a wide range of end uses including engineering polymers for manufactured goods, food additives, pharmaceutical excipients and drug-delivery agents. The properties and processability of a polymer depend greatly on its molecular weight distribution and monitoring and control of this parameter is key to product performance. Gel permeation chromatography (GPC) is a

Polymer Laboratories


well-established technique for the characterization of polymer molecular weight distribution (MWD). The accuracy and precision of the MWD determined from a GPC experiment rely on the performance of the whole system.


Experimental

The PL-GPC 20 is an integrated system specifically designed for routine GPC measurements at ambient temperature, which as standard comprises a precision solvent delivery system, choice of manual or automatic injection, and high-performance differential refractive index (RI) detector. Operation of the system is performed via an intuitive Windows-based control software package and data from the RI detector is acquired and analysed using Cirrus GPC software. A wide variety of both organic (PLgel) and aqueous (PL aquagel-OH) GPC columns can be selected according to application. The conditions employed for this set of experiments were: columns = 2 \times PLgel 5 μm MIXED-C, 300 \times 7.5 mm; eluent = THF; flow-rate = 1.0 mL/min.

Results

The RI detector displays both high sensitivity and excellent baseline stability for a wide variety of organic GPC solvents and aqueous-based eluents. This is illustrated in Figure 1 which shows a

separation of five narrow polydispersity polystyrene standards (concentration 0.1%, injection volume 100 μ L), a typical chromatogram generated as part of the column calibration procedure in GPC.

The flow-rate precision of the solvent delivery system is key to achieving the most reliable GPC determinations. The PL-GPC 20 delivers flow reproducibility of better than 0.10%, resulting in repeatable calibration curves and accurate polymer molecular weight data. Figure 2 shows an overlay of five consecutive GPC calibrations generated using a series of nine narrow polydispersity polystyrene standards. The retention times, uncorrected for flow-rate variation, of all of the standards are identical from one calibration to the next giving a perfect overlay of the five graphs indicating excellent repeatability.

As a further illustration of the repeatability of the system, Figures 3 and 4 show overlays of five molecular weight distribution plots calculated from five consecutive injections of two different commercial polymers, a polystyrene and a polycarbonate. The molecular weight averages calculated for each injection and the mean values and % variation are indicated alongside each plot. In both cases the repeatability of the determined values is better than 2%, which is well within the generally accepted limit for GPC of 3–5%.

Conclusions

The PL-GPC 20 is an integrated GPC system suitable for polymer characterization with ambient temperature operation. The system permits polymer MWD to be measured with a high level of accuracy and precision. The optional autosampler would be a valuable addition to the system for those laboratories handling large numbers of samples.

Polymer Laboratories Ltd,

Essex Road, Church Stretton,
Shropshire SY6 6AX, UK.
tel. +44 01694 723581, fax +44 01694 722171
e-mail: support@polymerlabs.com
website: www.polymerlabs.com
Reader Service 265