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he Italian mathematician, actuary,
and Bayesian, Bruno de Finetti
(1906–1985), once estimated that it

would take until the year 2020 for the
Bayesian view of statistics to completely
prevail.1 Whether or not his prediction
comes true, there is no question that
Bayesian statistics is gaining ground. In
drug regulation, however, the alternative
frequentist view continues to dominate,
although there are areas (for example the
regulation of medical devices) where the
Bayesian approach is being applied. Many
readers of Applied Clinical Trials will have
heard of Bayesian statistics, and some will
have wondered what it is. If de Finetti is
right, those who have not wondered yet
will have to reason to do so in future.

Statistics versus probability
Before explaining the difference between
Bayesian and frequentist statistics (and a

T third alternative, the likelihood approach,
which has some features of both), it is use-
ful to draw another distinction—proba-
bilists and statisticians. Probabilists are
mathematicians and, like others of that
breed, are involved in a formal game. The
game they play is subjunctive, which is to
say that it is a matter of if and then. If such
and such are true then such and such fol-
low. “If the die is fair, then there is one
chance in six that I will roll a one,” is a triv-
ial example of the sort of question proba-
bilists deal in. However, if you ask the
probabilist, “Is the die fair?” then you will
probably receive the reply, “That’s not my
department.” Enquiry as to whose depart-
ment it is leads to the statistician. The
statistician cannot restrict life to subjunc-
tive matters. Statisticians deal not just with
if and then, but also with whether and
what. Whether the die is fair or not, and, if
not, what exactly the bias is, are the sorts

Dawn of a
Bayesian era?
Although other
statistical
methods are
more popular,
the Bayesian
method is
quickly gaining
ground. 

C
O

LL
A

G
E

 K
.T

E
N

C
E

, P
H

O
T

O
S

 D
IG

IT
A

L 
V

IS
IO

N
 &

 A
R

T
V

IL
LE



36 APPLIED CLINICAL TRIALS actmagazine.com August 2003

of questions that statisticians are sup-
posed to try and answer and their answer
is supposed to rely on data.

In my book, Dicing with Death, I have
described this difference between proba-
bility theory and statistics as the differ-
ence between the divine and the human.2
Probability theory is a divine theory
because it works from known initial condi-
tions to consequences using universal
laws. These initial conditions are declared
by the probabilist in a fiat to begin with—
“let there be theta.” (Theta is a popular
choice of symbol to represent a probabil-
ity.) Thus the probabilist acts as creator of
his or her own universe. 

Statistics on the other hand is a human
science. The state of nature has been

declared and given, but we don’t know
what it is. All we can do is observe the con-
sequences and try and divine the rules
that govern our existence.

The distinction between probability and
statistics is also sometimes made in terms
of direct and inverse probability. A ques-
tion in direct probability might be, “In 100
tosses of a fair coin, what is the probability
of having exactly 40 heads?” A question in
inverse probability might be, “In 100
tosses of a coin, 40 showed heads. What is
the probability that the coin is fair?” The
former question is thus the province of
probability theory and the latter the
province of statistics. The second sort of
question is much harder to answer than
the first. In fact, it is so hard that mathe-
maticians, scientist, philosophers, and, of
course, probabilists and statisticians can’t
agree how it should be answered. The dif-
ficulty can be illustrated with a simple
example.

An example
Suppose that I have two urns, urn A and
urn B, each containing four balls. Urn A
contains three white balls and one black
ball, and urn B contains two black balls
and two white balls. I am informed that an

urn has been chosen and that a ball has
then been drawn at random from the urn
chosen. The ball is black. What is the
probability that it came from urn A? 

One simple answer might be as follows.
Before the ball was chosen the urns con-
tained three black balls between them:
one ball in urn A and two balls in urn B. If
any ball in either of the urns is equally
likely to be chosen, it is twice as likely that
the black ball chosen was from urn B as
that it came from urn A. Hence, the proba-
bility that it came from A is 1/3.

This answer can be formally justified by
a theorem in probability, Bayes theorem,
named after Thomas Bayes (1701–1761),
an English Presbyterian minister, and
which was communicated posthumously

by his friend Richard Price and read to the
Royal Society of London in 1763. In words,
Bayes theorem states that the probability
of an event E1 given another event E2 is
the joint probability of both events divided
by the probability of event E2. In symbols
we would write this as Equation 1:

Here P( ) means “probability of,” � means
“given,” and ∩ means “and.” Because the
probability of the joint event E1∩E2 is
P(E1∩E2)=P(E1)P(E2�E1) (which,
expressed in words means that the proba-
bility of “E1 and E2 “is the probability of E1

multiplied by the probability of E2 given
E1), an alternative representation of
(Equation 1) is Equation 2: 

Suppose, in our example, that event E1 is
“choose urn A” and E2 is “choose black
ball.” Then if each urn is equally likely a
priori to have been chosen we have
P(E1)=1/2. Furthermore, if each urn is
equally likely to be chosen, because both
urns contain the same number of balls,
each ball is equally likely to be chosen.

P(E1 E2)
P(E1)P(E2 E1)

P(E2)

P(E1 E2)
P(E1 ∩ E2)

P(E2)

Out of the eight balls in total, one is the
black ball in urn A so that the probability
of “urn A and black ball” is P(E1∩E2)=1/8.
On the other hand, three out of eight balls
in total are black. Hence we have
P(E2)=3/8. Now applying Bayes theorem
we can substitute these values in the right
hand side of the equation given by (Equa-
tion 1) to obtain

which is the answer we had before.

Some difficulties
This is all very well and may even seem
trivial, but there is a difficulty with this
answer. In formulating the question in the
first place I did not say that the decision
from which urn to withdraw a ball was
made at random, with each urn being
given an equal chance of being chosen. I
did specify that the ball was chosen from
the urn at random. The net result of this is
that although some of the probabilities for
this problem are well defined, for example
the probability of choosing a black ball if
urn A was chosen in the first place, one
important probability is not, that of choos-
ing urn A.

It is the case that many of the problems
we encounter in science have probability
elements that can be divided into two
sorts. One sort can be fairly well defined.
We assume that a given theory is true and
then calculate the probability of the conse-
quences. For example, we might assume
that the probability, �, that a patient will
be cured if given a particular drug is 0.3.
We can then calculate very precisely, for
example, given this assumed value what
the probability is that exactly 40 patients
in a sample of 100 will be cured. In fact,
given that we have a sample of 100
patients 40 of whom have been cured we
can calculate the probability of this event
as a function of the probability � substi-
tuting all sorts of values, not just 0.3. This
type of probability, where the event is
fixed and the hypothesis changes, were
called likelihoods by the great statistician,
geneticist and evolutionary biologist R.A.
Fisher (1890–1962) and play a central part
in statistical inference. Suppose in our
urn-sampling problem that we had drawn
a white ball. The probability of sampling a
white ball is 3/4 if A is chosen and 1/2 if B
is chosen. These are the so-called likeli-

P(E1 E2)
P(E1 ∩ E2)

P(E2)
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Many of the problems we encounter in
science have probability elements that
can be divided into two sorts—one
sort well defined, the other sort not 
well defined.
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hoods. Note that they do not add up to one
and there is no general requirement for
likelihoods, unlike conventional probabili-
ties, to do so. This is because the event
(white ball) is fixed and the hypothesis
(urn A or urn B) is allowed to change. For
conventional probability we fix the
hypothesis (for example urn A) and vary
the outcome (black or white ball).

The second kind of probability element
is not well defined. This is the probability
of a given hypothesis being true in the
first place. For example the hypothesis, in
advance of running a trial in 100 persons,
as to the probability of a cure. It turns out,
however, that to issue inverse probability
statements, it is necessary to assume such
prior probabilities. Because we lack an
objective basis for them, this can only be
done subjectively. In attempting to solve
the urns and ball problems you have to
assume a prior probability that urn A was
chosen, even though this was not speci-
fied in the problem.

This brings us to the heart of the prob-
lem. In order to use Bayes theorem to
allow us to say something about the prob-
ability of a scientific hypothesis H being
true given some evidence e, we would
have to use (Equation 2) to write some-
thing like Equation 3:

Here P(H�e) is sometimes referred to
as the posterior probability of the hypoth-
esis—the probability after seeing the evi-
dence. The difficulty is that of the three
terms on the right-hand side of (Equation
3), we can usually only find objective val-
ues for P(e�H), the probability of the evi-
dence given the hypothesis. However, the
prior probability of the hypothesis, P(H) is
needed for the solution, as is the probabil-
ity of the evidence P(e). The latter is par-
ticularly awkward to obtain, because
many dif ferent hypotheses would give
rise to e (albeit with differing probabili-
ties). Thus you need to know the prior
probability of every single such hypothe-
sis in order to calculate it.

Odds, Bayes, and likelihood
However, by reformulating our objectives
slightly, the difficulty of having to estimate
P(e) can be finessed. Suppose that we
wish to compare the posterior probabili-
ties of two hypotheses, HA and HB in

P(H e)
P(H)P(eH)

P(e)

terms of their ratios, or odds. We can use
(Equation 3) to write

and also

The ratio of these two expressions
gives us what we require and, fortunately,
the awkward term P(e) cancels out so that
we are left with Equation 4:

This is the odds ratio form of Bayes the-
orem, promoted by the British mathemati-
cian and statistician George Barnard
(1915–2002). It states that the posterior
odds of one hypothesis compared to
another is the product of the prior odds
(the first of the two terms in curly brack-
ets) and the ratio of likelihoods (the sec-
ond of the two terms in curly brackets).
This still leaves us with the problem of
estimating the prior odds. There are three
common “solutions.”

The first is the Bayesian one of stating
that there is nothing inherently problem-
atic about subjective probabilities,
because probabilities anyway are nothing
more or less than a statement of belief.
The difficulty with using Bayes theorem
only arises because of the myth of objec-
tive probabilities, which is part of the

myth of objective knowledge. Indeed, de
Finetti himself referred contemptuously
to the, “inveterate tendency of savages to
objectivize and mythologize everything.”1

What the Bayesian says is, “abandon your
pretensions of objectivity, embrace subjec-
tivity, and recognize that you need to
include personal belief as part of the solu-
tion of any problem.” Thus introspection
is the key to the solution. It is personal
belief that provides the final (otherwise
missing) ingredient to the calculation of
posterior probabilities.

The second solution is to go halfway

P(HAe)
P(HBe)

P(HA)P(e HA)

P(HB)P(e HB)

P(HA)
P(HB)

P(e HA)

P(e HB)

P(HB e)
P(HB)P(eHB)

P(e)

P(HA e)
P(HA)P(eHA)

P(e)

only. This is to say that of the two terms on
the right-hand side of (Equation 4), one
(the ratio of likelihoods) is well defined
and may attract a fair degree of assent as
to its value but the other (the prior odds)
is not. For example, in my urn and ball
problem, because I did not define the
mechanism by which the urns were cho-
sen then

is completely speculative and not worth
including in the problem. However, the
second term,

is defined by the problem. Indeed, it is
equal to (1/4)/ (2/4)=1/2. The ratio of
likelihoods is thus one to two comparing
urn A to urn B or two to one in favor of urn
B. This quantity is then perfectly objec-
tive. The Bayesian will counter that this
may well be so but it still fails to capture an
important element of the problem, namely
the prior odds. Furthermore, it turns out
that for more complex cases it is not
always possible to calculate such simple
ratios of likelihoods.

The frequentist approach
The third solution is the frequentist one.
This is to abandon all pretence of saying
anything about hypotheses at all. Effec-

tively, inverse probability is rejected alto-
gether and one tries to work with direct
probabilities only. For example one could
adopt the following rule of behavior. If a
black ball is chosen I shall act as if it came
from urn B. If a white ball is chosen I shall
act as if it came from urn A. We can then
calculate the probabilities of making two
types of error. If urn A was the urn from
which the ball is chosen, then there is a
one in four chance of choosing a black
ball. Thus there is a one in four chance of
being wrong. On the other hand, if urn B
is the urn from which the ball is chosen,

P(eHA)
P(eHB)

P(HA)
P(HB)

The difficulty with using Bayes theorem only arises
because of the myth of objective probabilities, which
is part of the myth of objective knowledge.
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then there are two chances out of four of
choosing a white ball; thus there is a 50%
chance of being wrong. This is referred to
a “hypothesis testing” and is an approach
that was developed at University College
London in the later 1920s and early 1930s
by the Polish mathematician Jerzy Ney-
man (1894–1981) and the British statisti-
cian Egon Pearson(1895–1980). Neyman
later emigrated to the United States and
founded an extremely influential and vig-
orous school of statistics at Berkeley.
Note, however, that these error rates are
subjunctive. The probability statements
are of the “if/then” form. They do not cor-
respond to probabilities that the hypothe-
ses are true and, indeed, Neyman would

deny that any such statement has mean-
ing. A hypothesis either is or is not true
and hence does not have a probability of
being true.

The Neyman-Pearson system is the one
that appears to be the one used in drug
regulation. We refer to type I error rates,
to null and alternative hypotheses, to
power of tests, and so forth. All of these
are concepts that play an important part in
that system. Nevertheless, the way in
which the system is applied in practice
reflects elements of a slightly older and
similar system, much developed by RA
Fisher. A problem in applying the Ney-
man-Pearson system in practice is that
often the probability of the evidence is
often only well defined under a so-called
null hypothesis. In a controlled clinical
trial such a hypothesis might be, “there is
no difference between the treatments.”
Given such a null hypothesis the probabil-
ity of observing a result as extreme or
more extreme than the observed differ-
ence between treatments, the so-called p-
value, may be calculated. This may be

compared to a standard level of signifi-
cance, for example 5%. If the p-value is less
than this standard, the hypothesis is con-
sidered rejected. Such a procedure can be
employed to guarantee a given type I
error rate, as in the Neyman-Pearson sys-
tem, but does not employ any specific ref-
erence to alternative hypotheses, which
can be difficult to characterize. For exam-
ple, the logical alternative to, “the treat-
ments are the same,” is the, “treatments
are dif ferent,” but because there are
infinitely many ways in which treatments
can differ, this does not yield a unique way
of calculating probabilities.

It would be simplistic to conclude that
the difference between frequentist and
Bayesian statistics is that the former is
objective and the latter subjective. It would
be more accurate to say that the former is
subjunctive (if the null hypothesis is true I
shall make an error with this probability)
and the latter is subjective (my personal

belief of the truth of this statement is such
and such). Bayesians would claim that fre-
quentist methods give an illusion of objec-
tivity. Frequentists deny any place for sub-
jective probability, but, in fact, the
interpretations that result from any appli-
cation of frequentist statistics depend very
much on personal actions. For example,
the decision to inspect a trial during its
running with the possibility of stopping the
trial early may impact on the reported p-
value. Thus, it is not only the data that
affect the conclusion but the trialist’s inten-
tions also. Such behavior has no direct
impact on Bayesian calculations, which are
not affected by the number of times one
looks at a trial and so from this point of
view can claim to be more objective.

Where does this leave us?
In my view, it is too early to say. It may be
that de Finetti’s prediction will come true
and we shall move to a consensus that
Bayesian methods are those we should
use. Perhaps, on the other hand, drug reg-
ulation will continue much as before. Per-

sonally, I like the advice of George
Barnard. Starting with a key paper in
1949, Barnard produced many trenchant
criticisms of the then dominant frequen-
tist school but never accepted that
Bayesian methods alone would be suffi-
cient for the applied statistician.3 Towards
the end of his life he suggested that every
statistician ought to have basic familiarity
with the four major systems of infer-
ence—de Finetti’s fully subjective
Bayesian approach, a less extreme ver-
sion pioneered by the British geophysicist
Harold Jeffreys (1891–1989) (which has
not been discussed here), the Neyman-
Pearson system and Fisher’s mix of signif-
icance tests and likelihood.4

Of course this can be regarded as a
rather unsatisfactory situation. We have to
have four systems rather than one. Is
statistics not complicated enough as it is?
As already explained, however, statistics
is a human subject not a divine one. The
difficulties it attempts to overcome are
genuine and our human powers are lim-
ited. In making sense of clinical trials we
have no choice but to count and measure;
and to make sense of our counting and
measuring we have no choice but to use
statistics. As in other areas of human
struggle, pragmatic compromise,
although not perfect, may avoid the disas-
ters to which fanatic single-mindedness
can tend.
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