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Fast HPLC in Laboratory

Faster throughput is a driver for innovation in HPLC. Reducing particle size has been the strategy of many manufacturers to dbtain Fast
HPLC. The cost for the fast performance of smaller particles is the need to buy UHPLC systems due to the high backpressure of the small
particles. Ascentis Express provides the fast HPLC of the smaller particles but at much lower backpressure suitable for all HPLC systems.
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Uses Current HPLC Systems
Start Immediately

Expert Support Available Daily
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Imitated worldwide. Never equalled.

The number one portfolio of GCs in the world. Why settle for an imitation when you can have the original and best GC from
Agilent! We offer the broadest range of GC, Micro GC, GC/MS systems and analyzers for any application. Our solutions
deliver the highest level of analytical performance and day-after-day productivity from sample prep through final report.
Plus our sample preparation products, columns and support all come with the assurance of legendary Agilent reliability.
Which is why it's no surprise that we have the largest installed base of GC solutions on earth.

Learn why we're the genuine global GC leader. www.agilent.com/chem/genuinelybetter
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Our technology couldn’t be more state-of-the-art.
Our business philosophy remains stuck in the 1950s.

As the only independent, family-owned light scattering company in the industry, we have no shareholders, investors
or 3rd parties to please. We've been in business for nearly three decades, building the finest, most versatile light scattering
instruments available anywhere on earth. We're passionate about your success and make sure our instruments are tools
you can rely on every day. And we go to great lengths (and expense) to make sure youre delighted. Take, for example, our
Light Scattering University, where we bring you to Santa Barbara, CA for three days of intensive, hands-on training (all
expenses paid*). While youre here, you meet the people who design and build your instruments, learn about the
software from the people who write it, and interact with the people who will be answering your questions. We
don't just build instruments, we build relationships that last for years. To learn more about how you can become a
member of the Wyatt instrument family of customers, visit www.wyatt.com. We think you'll appreciate our old-fashioned
approach. Because whether you're buying a light scattering instrument or a bag of

groceries, its nice to be treated like you're the most important person in the world.
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CORPORATION

DAWN HELEOS®. The most advanced Optilab T-rEX®. The refractometer with ViscoStar™. The viscometer with Eclipse. The ultimate system for the DynaPro Plate Reader. Automated, non-invasive
multi-angle light scattering instrument for the greatest sensitivity and range. unparalleled signal-to-noise, stable separation of macromolecules and dynamic light scattering for proteins and nano-
macromolecular characterization. baselines and a 21st-century interface. nanoparficles in solution. particles in 96 or 384 or 1536 well plates.

*Round trip airfare for US and Canadian customers only. ©2011 Wyatt Technology. DAWN, Optilab, DynaPro and the Wyatt Technology logo are registered trademarks, and ViscoStar and Eclipse are trademarks of Wyatt Technology Corporation.



1028 LCGC NORTH AMERICA VOLUME 29 NUMBER 12 DECEMBER 2011

\ S o

Microl i

Industry Leaders Prove ITSP™
(Instrument Top Sample Prep)
Methods for Pain Management
and Drugs of Abuse from Urine
Save Significant Time & Money

Results from ITSP extractions of human urine submitted in
Driving Under the Influence - Drugs (DUI-D) cases were
compared to industry standard techniques to see if TSP could
produce comparable results. It was concluded that analysis using
ITSPHPLC/MS/MS produces comprehensive results in less time
for less money than conventional screening using Immunoassay
followed by GC/MS and/or LCMSMS confirmation.

Also concluded:

© More drugs were found using ITSP/HPLC/MS/MS than
traditional single class confirmation.

© One operator can process 50 case samples per day using both
methods on one ITSPHPLC/MS/MS.

o Current costs of expendable supplies for a five panel drug
screen (FPIA) for a single confirmation utilizing traditional SPE
and GC/MS or LC/MS/MS average $16.50. Supplies for additional
confirmations average $7.00 [per panel].

¢ Total for all supplies to perform both ITSPHPLC/MSMS
methods is $12 per sample.

For a copy of the Paper and a Means of Trying
ITSP Manually for yourself contact:

ﬂLMicroLitery

“ ANALYTICAL SUPPLIES, INC.

PO Box 808 e Suwanee, GA 30024
888-232-7840 - www.microliter.com/technical
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A Hamilton Microliter Syringe looks just like a simple syringe, but looks can be deceiving.

Our trained crafts people start with pharmaceutical grade glass and fine stainless steel.

In all, 67 individual production operations and quality control checks are used to create a
Hamilton syringe. This includes 36 individual glass operations to create the flange, attach the
termination, and carefully etch the graduations using an ionic reaction with silver nitrate.

The plunger is straightened and centerless ground by precision machines, before it is
hand-fitted to the barrel with a tolerance of 1 millionth of an inch. At final inspection every
syringe is tested for leaks with acetone at five atmospheres pressure.

Hamilton Company’s commitment to quality is equaled only by its commitment to the
scientific community. A Microliter 701N was $18.00 in 1958 and in 2012 it is $19.80.

By continually improving our manufacturing processes we have held our price without losing
the pride, commitment, and quality necessary to manufacture the world standard in precision
liquid measuring devices...

The Syringe with the velvet feel.

Go to www.ham-info.com/0412 to find a distributor.

TOLL FREE ORDER HOTLINE
1-888-525-2123

e-mail: sales@hamiltoncompany.com
www.hamiltoncompany.com

THE MEASURE OF EXCELLENCE™
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Microextraction in the Three-Phase Mode —
Practical Considerations

Astrid Gjelstad, Hamidreza Taherkhani, Knut Einar Rasmussen,
and Stig Pedersen-Bjergaard

The practical aspects of hollow-fiber liquid-phase microextraction

in the three-phase mode (HFPLPME) are described.
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Troubleshooting Basics, Part lil:
1046 Retention Problems
John W. Dolan
A look at situations in which retention times are too long, too
short, or inconsistent
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Albert A. Elian, Jeffery Hackett, and Michael ]. Telepchak
Phenazepam is becoming a drug of interest in forensic laboratories.
This new procedure will enable forensic toxicologists to analyze
phenazepam in biological fluids quickly and easily.
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Get On The Fast Track
To Success

amaZon speed™

Increased Productivity and Throughput
Market Leading Resolution

Excellent Sensitivity

Robust and Reliable

Expanded Analytical Capabilities

The amaZon speed series of lon Trap Mass Spectrometer elevates the performance and
utility of lon Trap MS to entirely new levels. Ideal for both Small Molecule and Proteomics
applications, the amaZon speed provides unmatched mass resolution, MS/MS efficiency
and highly reproducible quantitative results.

Designed to deliver a unique combination of performance, reliability and
flexibility, the amaZon speed takes lon Trap Mass Spectrometry to a much
better and faster place.

To learn more, please contact your local Bruker representative and visit
www.bruker.com/ms.

For research use only. Not for use in diagnostic procedures.

Innovation with Integrity

ION TRAP MS
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Spark Holland B.V. in Partnership
with Axel Semrau GmbH & Co. KG
Spark Holland B.V. (Emmen, The
Netherlands), a supplier of analyti-
cal instrumentation transferred its
direct sales and service activities for
its online solid-phase extraction (SPE)
products and services in Germany to
Axel Semrau GmbH & Co. KG (Sprock-
hovel, Germany). The transaction
allows Axel Semrau to provide online
SPE products to customers and mar-
kets in Germany.

Axel Semrau will become a “Value
Added Partner” of Spark Holland, and
as such, it will provide more value to
the product offering along with a
higher level of technical and customer
support. The products supported are
the online SPE systems, which include
Spark’s brand names Symbiosis Pico
and Symbiosis Pharma. Product offer-
ings also include consumables, such as
SPE cartridges.

36th International Symposium on
Capillary Chromatography

The 36th International Symposium on
Capillary Chromatography (ISCC) will take
place at the Palazzo dei Congressi in Riva
del Garda, Italy, May 27-June 1, 2012. The
four-day event will feature recent find-
ings from leading academic and industrial
experts in the form of lectures and post-
ers. The conference will offer sessions on
capillary gas chromatography, microcol-
umn liquid chromatography, electromi-
gration methods, and microfabricated
analytical systems. These are expected

to cover lab-on-a-chip, column technol-
ogy, coupled and multidimensional
techniques, comprehensive techniques,
hyphenated techniques, sampling and
sample preparation, and trace analysis
and automation.

At the meeting, the 2012 Marcel Golay
Award will be presented in recognition of
outstanding contributions in the field of
separation science. Outstanding research
work presented as oral or poster contribu-
tions by scientists 35 years and younger
will be awarded the Leslie Ettre Award for
research on capillary gas chromatography
applied to environmental or food analyses.

gramme,” which includes a welcome
reception, a cocktail party, and a

Chromatography Market Profile
GC-MS

Gas chromatography-mass
spectrometry (GC-MS)
combines a gas chromato-
graphic front-end separation
with a mass spectrometer.
For the most part, the gas
chromatographs and mass
spectrometers used are
modular in design and are
relatively easily to separate.
GC-MS is the most widespread tandem technique in the analytical instru-
mentation industry. The systems are employed in many different industries,
particularly for environmental, chemical, and toxicological applications.

The mass analyzers used in GC-MS include quadrupole, ion trap, and time-
of-flight (TOF) analyzers. Quadrupole mass analyzers consist of four parallel
rods. By simultaneously changing both the dc and rf amplitudes applied
to the rods, ions of various sizes (mass-to-charge ratios are able to pass
through the quadrupole to the detector.

lon traps use an electric field that is generated by a sandwich geometry
in which a space is bounded in three dimensions by ring and cap elec-
trodes on each end. lons of selected m/z range are trapped in the space
bound by the electrodes, and the electric field is varied to eject ions of
increasing m/z for detection. lon traps can perform multiple MS-MS dis-
sociations as well.

In TOF mass analyzers, which operate in a pulsed mode rather than a con-
tinuous mode, all the ions are accelerated to the same kinetic energy and
are pulsed into the field-region of the flight tube. lons with different m/z
values arrive at the detector at different times. Lighter atoms with higher
velocities arrive before the heavier atoms.

In a recent survey of nearly 400 GC and GC-MS users conducted by Strate-
gic Directions International (SDi), the end users were asked to rate a variety
of instrument parameters according to how important they were when
selecting a GC-MS instrument. Overall, system quality and reliability, sensi-
tivity, and post-sales service and support were the highest-rated factors by
the survey participants.

The accompanying figure shows the regional distribution of respondents
to the survey. Participants from the United States and Canada represented
the largest number of respondents, followed by Europe, Asia, and the rest
of the world.

The foregoing data were extracted from SDi’s Tactical Sales and Marketing
(TSM) report entitled GC and GC-MS: Global Insight into Market Trends and
End-User Attitudes. For more information, contact Glenn Cudiamat, VP of
Research Services, Strategic Directions International, Inc., 6242 Westchester
Parkway, Suite 100, Los Angeles, CA 90045, tel. (310) 641-4982, fax (310)
641-8851, email: cudiamat@strategic-directions.com

Il USA & Canada - 56%
Europe - 23%
 Asia/ROW - 21%

Regional distribution of Sdi's survey of GC and
GC-MS users.

The well-known “Riva Social Pro- classical concert, will also take place.
For more information, visit

www.chromaleont.it/iscc. m
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Columns and Bulk Packing Matﬁal

Exciting, innovative, Triart hybrid
C18 for HPLC, UHPLC, and prep

YMC-Triart is a layered hybrid particle that is mechanically
and chemically stable for acidic, basic, and neutral analytes.
e Suitable for pH 1-12; up to 70°C
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related to the supported
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uses an electrical potential
as the driving force for the
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his column installment describes

practical aspects of hollow-fiber

liquid-phase microextraction
in the three-phase mode (HF’LPME).
HF?LPME is a microscale sample prepa-
ration technique (1) in which target
analytes are extracted from an aque-
ous sample through a supported liquid
membrane (SLM) that is immobilized
in the pores of a porous polymeric mate-
rial and into a volume of acceptor solu-
tion (typically, 10-30 pL). In this con-
text, the porous polymeric material is a
hollow fiber. Here, we highlight impor-
tant practical issues related to the SLM,
the hollow fiber, and the extraction
itself, as these issues are important for
successful HFPLPME. We also discuss
practical work with electromembrane
extraction (EME), which is related to
the HFPLPME device but uses an elec-
trical potential as the driving force for
the extraction (2).

How Does HF’LPME Work?
HFLPME can be used for extraction
of basic or acidic analytes from aqueous
samples. Figure 1 illustrates a setup for
HFLPME. The sample is contained in
a sample vial and the pH is adjusted in
the sample before extraction to keep the
analytes in their uncharged state. For
basic analytes, the sample is made alka-
line, and for acidic analytes, the sample
is acidified. A small piece of a porous
hollow fiber, typically made of polypro-
pylene, is closed in one end and dipped
in an organic solvent immiscible with
water. In a few seconds, this organic
solvent is immobilized in the pores in
the wall of the hollow fiber by capillary
forces, forming an SLM. A 10-30 pL
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Hollow-Fiber Liquid-Phase
Microextraction in the Three-
Phase Mode — Practical

volume of aqueous acceptor solution is
then injected into the lumen of the hol-
low fiber. For basic analytes, the accep-
tor solution is acidic, whereas it is alka-
line for acidic analytes. The hollow fiber
is finally placed into the sample and the
whole assembly (sample vial and hollow
fiber) is agitated for typically 15-45
min. During this time, analyte mol-
ecules are extracted in their uncharged
state from the sample into the SLM, and
further into the acceptor solution. In the
acceptor solution, the analyte molecules
become ionized, which prevents them
from re-entering the SLM. After extrac-
tion, the acceptor solution is collected
and analyzed directly by high perfor-
mance liquid chromatography (HPLC),
capillary electrophoresis (CE), mass
spectrometry (MS), or other related ana-
lytical techniques.

The major advantages of HFPLPME
can be summarized as follows:
* High enrichment (up to 25,000-fold) (3)
* Excellent sample cleanup
e Direct compatibility with HPLC, CE,

and MS
* Low solvent consumption (10-30 pL

of solvent per extraction)
Advantages, as well as limitations, of
HFPLPME have been discussed sub-
stantially in the literature and several
reviews discussed a broad range of
applications (4-11).

Which Hollow Fibers

Are Used for HFPLPME?

The porous hollow fibers used for
HFLPME typically are made of poly-
propylene (4). Most work published in
the literature has been accomplished
with a polypropylene hollow fiber from
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Membrana (Wuppertal, Germany)
termed “Q3/2” that has an internal
diameter of 600 pm, a wall thickness of
200 pm, and a pore diameter of 0.2 pm
(4). The hollow fiber is connected to a
precut pipette tip or a medical syringe
needle. The pipette tip or syringe needle
serves as a guide tube to facilitate the
injection and withdrawal of the acceptor
solution, as illustrated in Figure 2. The
fiber can be arranged either in the loop
configuration with connections in both
ends (Figure 2b) or in the rod configura-
tion with a connection in one end and
the other end closed (Figure 2a). To close
the hollow fiber, mechanical pressure
with a pair of pincers can be used — no
heat or glue is required. In our labora-
tory, we use pipette tips for the connec-
tions. In this case, we carefully heat the
connection between the tip and the fiber
with a soldering iron to prevent disrup-

Acceptor solution

Organic solventimmobilized in ~ Sample solution

the walls of the hollow fiber
(Supported liquid membrance)

Figure 1: lllustration of a typical hollow-

fiber liquid-phase microextraction in the
three-phase mode (HF3LPME) setup.

C)) (b)

tion. Alternatively, the hollow fiber also
can be attached directly to the needle of a
microsyringe for easy injection and with-
drawal of the acceptor solution, as illus-
trated in Figure 2c (12). Alternative fiber
dimensions also can be used, but gener-
ally the thickness of the wall of the fiber
should not exceed 200-300 pum because
the extraction speed and the recovery are
dependent on the thickness of the SLM.
Fibers with internal diameters less than
600 pm have been reported to speed up
HF’LPME with small volumes of accep-
tor solution for high enrichment (3), and
hollow fibers with internal diameters larger
than 600 pm have been used for easier
injection and withdrawal of the acceptor
solution (13,14).

What Solvents Can Be
Used as the SLM?
In HF?LPME, the SLM is an intermedi-
ate extraction medium. Analytes should
be extracted rapidly and efficiently into
the SLM, but transport out of the SLM
and into the acceptor phase also should
be efficient to avoid substantial trapping
of analytes in the SLM itself. Substan-
tial trapping in the SLM is undesirable
because it reduces the extraction recov-
ery. In other words, finding the opti-
mum SLM solvent for the application is
an important step.

For HF?LPME, dihexyl ether and
1-octanol have been the most popular
SLM solvents (4). As seen in Table I,

(9

e —

Figure 2: Different configurations for hollow-fiber liquid-phase microextraction in
the three-phase mode (HF3LPME): (a) rod configuration, (b) loop configuration, and (c)
hollow fiber attached directly to the needle of a microsyringe.

DECEMBER 2011 LCGC NORTH AMERICA VOLUME 29 NUMBER 12 1039

these two solvents have a high boiling
point (>195 °C), and when the hollow
fiber is dipped in the solvents, little or
almost no evaporation of the SLM is
observed during 2 min of air exposure
(Table I). This observation is important
because the hollow fiber with the immo-
bilized SLM is normally exposed for a
short time (<2 min) to open air before it
is placed in the sample. After the hollow
fiber with the SLM is inserted in the
sample in a capped vial, evaporation is
no longer an issue because the SLM is
protected by the aqueous sample and the
system is closed. Volatile solvents such
as toluene and 1-chloropentane may be
difficult to use in HFPLPME because
they evaporate quickly and give an
unstable SLM (see Table I). In general,
it is recommended not to use solvents
with a boiling point below 190-200 °C
for HFPPLPME.

In addition to the volatility of the
solvent, the water solubility also is
important. For dihexyl ether, the water
solubility is low (<110 pg/mL), therefore,
SLMs made from this solvent are very
stable during extraction. With 1-octa-
nol, the water solubility is higher (1200
pg/mL) and this solvent may leak into
the sample (and the acceptor solution)
in significant amounts. As seen in Table
I, about 11% of an 1-octanol SLM may
theoretically leak into 1 mL of sample
based on the water solubility, resulting
in a significant reduction of the SLM.
This level of SLM leakage has been
verified experimentally in our labora-
tory by analyzing the sample solution
after HFPLPME wich gas chromatog-
raphy—mass spectrometry (GC-MS)
to determine traces of 1-octanol. This
loss may be even greater if the sample
volume is increased or if surfactants and
other emulsifying agents are present in
the sample. In general, it is preferred not
to use solvents exceeding 200-400 pg/
mL in terms of water solubility. In addi-
tion to dihexyl ether, solvents such as
1-decanol, dodecyl acetate, 2-nitrophe-
nyl octyl ether, and 1-nonanol fulfill the
criteria discussed above and have been
used in HFPLPME studies (Table I) (4).
Some new solvents that have been tested
recently in our laboratory for HFPLPME
also are included in Table I and may
be interesting SLM candidates for
the future.
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Table I: Boiling point, evaporation, water solubility, and dissolution data for various solvents for hollow-fiber
liquid-phase microextraction in the three-phase mode (HF3LPME)

— Potential Dissolution
Wate(r s?rlrtjlglhty of SLM from Fiber into
Ha9 SampleS (%)

Evaporation of SLM
from Fiber After 2

Boiling point* (°C)
min in Open Air (%)

Frequently Used Solvents

Dihexyl ether

223

0.0

110

1-Octanol

Less Frequently Used Solvents

195

0.8

1200

1-Chloropentane 107 40.6 180 1.6
1-Decanol 228 0.0 120 1.1
Dodecyl acetate 265 0.0 20 0.2
2-Nitrophenyl octyl ether 351 0.0 6 <0.1
1-Nonanol 212 0.0 390 3.5
2-Octanone 173 1.6 2300 21

Toluene m 34.5 320 2.9

Future Alternative Solvents

2,2-Dimethyl-1-propylbenzene 209 1.6 1.9 <0.1
2-Hexyl-1-decanol 304 0.0 0.039 <0.1
Isopentyl benzene 193 0.7 2.5 <0.1
Nitrostyrene 239 0.0 300 2.7

*Data obtained from SciFinder
Measured with an analytical balance

*Data obtained from SciFinder, at 25 °C and pH 10
SCalculated from the water solubility data based on a sample volume of 1 mL

How Much Does the SLM
Affect the Extraction?

Table IT (basic drugs as model analytes)
and Table III (acidic drugs as model
analytes) illustrate recent examples from
our laboratory in which the extraction
recovery in HFPLPME was strongly
affected by the type of solvent used in
the SLM. For the basic model analytes,
the highest recoveries were obtained
with dodecyl acetate, 2-octanone, and
isopentyl benzene as the SLM solvent.
For the acidic drugs, dodecyl acetate,
isopentyl benzene, and 1-decanol were
the top three SLM solvent candidates. A
closer look at the results in Tables IT and
III indicate several important aspects.
First, recoveries were generally higher
for the acidic model analytes than for
the basic model analytes. The reason for
this result was probably that the selected
acidic model analytes were slightly more
polar than the basic ones. From earlier
experience (15), it is well known that

extraction recoveries in HFPLPME are
highest for analytes with log P values

in the 24 range, whereas the extract-
ability decreases somewhat for analytes
with log P values exceeding 4. The basic
model analytes in Table IT where highly
hydrophobic (log P in the 3.1-5.3 range),
and extraction from the organic SLM
and into the aqueous acceptor phase was
somewhat limited by partition. Because
of this, selection of the solvent was very
important for the basic model analytes.
Second, the extraction performance of
each of the solvents was checked against
the Snyder solvent selectivity classifica-
tion system (16). The two top solvents,
namely dodecyl acetate and 2-octanone,
were both class VI solvents (aliphatic
ketones and esters) and the next two
solvents were both class VII solvents (aro-
matic hydrocarbons). Although relatively
different in terms of chemical structure,
class VI and VII solvents are close to
each other in terms of solvent selectivity

properties with relatively strong proton
acceptor and dipole characteristics.

A somewhat different picture was
observed for the acidic model analytes
in Table ITI. Because these analytes were
less hydrophobic, with log P values in
the 2.9-4.3 range, they were more eas-
ily extracted from the organic SLM and
into the aqueous acceptor phase. There-
fore, the selectivity of the solvent was
less critical for these analytes. Thus, the
five top solvents, all of which provided
average recoveries of 70% or more,
belonged to Snyder classes I, II, VI, and
VIL. These solvents have substantial
differences in terms of solvent selectiv-
ity, proton acceptor, proton donor, and
dipole characteristics.

In general, solvent selection in
HF?LPME has been carried out mainly
by trial and error, testing a limited num-
ber of candidates including dihexyl ether
and 1-octanol. Most likely, more system-
atic approaches will be developed in the
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Droperidol Haloperidol Nortriptyline | Clomipramine Clemastine Average*
Dodecyl acetate 70 64 65 48 62 62
2-Octanone 85 54 54 41 49 57
Isopentyl benzene 55 65 68 1 43 54
2,2-Dimethyl-1-propylbenzene 39 58 69 40 a1 49
Dihexyl ether 29 48 50 48 59 47
2-Nitrophenyl octylether 28 57 64 41 41 46
3-Nitrostyrene 65 46 47 21 18 39
1-Nonanol 68 21 38 15 10 30
1-Octanol 67 19 35 22 14 29
2-Hexyl-1-decanol 21 26 40 28 25 28
1-Decanol 65 20 32 1 8 27
*Average of recoveries reported for droperidol, haloperidol, nortriptylin, clomipramine, and clemastine

Ibuprofen Naproxen Ketoprofen Gemfibrozil Average*

Dodecyl acetate 83 82 83 79 82
Isopentyl benzene 83 83 61 83 78
1-Decanol 74 77 71 70 73
3-Nitrostyrene 71 71 74 69 71
1-Octanol 70 72 69 69 70
2,2-Dimethyl-1-propyl benzene 70 70 60 70 67
1-Nonanol 68 69 66 58 65
2-Nitrophenyl octylether 68 67 48 71 63
2-Hexyl 1-decanol 60 56 34 55 51
Dihexyl ether 8 39 6 2 14
2-Octanone nd nd nd nd nd
*Average of recoveries reported for ibuprofen, naproxen, ketoprofen, and gemfibrozil

future that will take further solvent prop-
erties into consideration. It also should be
mentioned that HFPLPME is best suited
for analytes with log P > 2. For analytes
with log P < 2, extraction is more chal-
lenging and requires the addition of a
carrier such as an ion-pair reagent either
to the sample or the SLM (15).

How Should the Dry

Hollow Fiber Be Handled?

The dry hollow fibers for HFPLPME
typically are purchased as bundles from
the manufacturer. No hollow fibers are
currently manufactured specifically for
HF?LPME; instead they are industrial
products for totally different applications.

We recommend storing the hollow fibers
in a closed bag protected from light,
because air and light exposure over long
time periods might degrade the mechani-
cal stability of the hollow fiber and make
it more fragile. Before use, the hollow
fiber needs to be cut to form pieces of
appropriate length. We recommend using
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Figure 3: Recovery versus extraction
time for haloperidol. Supported liquid
membrane: 2-nitrophenyl octylether;
sample: 1 mL of 25 mM ammonia buffer
pH 10 containing 1 pg/mL haloperidol;
acceptor solution: 25 pL of 10 mM HCI.

gloves when cutting the fiber to avoid
contaminating it. It is important that
each piece be cut to exactly the same
length. If fibers are of different lengths,
the volume of the SLM will vary from
extraction to extraction, and this may
give some variation in the results. In two-
phase hollow-fiber liquid-phase microex-
traction it is common to wash the hollow
fiber with acetone before extraction

to remove additives in the polymeric
material (17). This is less important in
HFLPME because the acceptor solution
is aqueous and most polymer additives
are not soluble in aqueous solution. How-
ever, for extraction of very hydrophobic
analytes, recoveries may be slightly
improved if the hollow fiber is prewashed
with acetone (18). Each piece of hollow
fiber is for single use and should always
be discarded after extraction to avoid car-
ryover from one extraction to another.

How Should the SLM

Be Prepared?

The SLM normally is prepared by dip-
ping the hollow fiber into the organic
solvent for 5-10 s. The organic solvent is
immediately immobilized in the pores in
the wall of the hollow fiber by capillary
forces. This procedure is very simple,
but the exact amount of organic solvent
is unknown, and excess organic solvent
may be located on the surface of the
hollow fiber. In such cases, it is recom-
mended to remove excess solvent from
the hollow fiber. This can be accom-
plished either by wiping the fiber with a
medical wipe or exposing the fiber and
the SLM to ultrasonification in a water

bath for 5-10 s. The former method
(medical wipe) is recommended, as this
procedure has been reported to yield the
most reproducible SLM (18).

Alternatively, the organic solvent can
be injected into the lumen of the hol-
low fiber using a microsyringe. In this
procedure, the SLM is coated from the
inside of the hollow fiber. The advan-
tage here is that the volume of the SLM
solvent is controlled more exactly; this
approach may be interesting for future
automation of HFPLPME. The typical
volume of the SLM solvent in one piece
of hollow fiber is 10-30 pL.

It is recommended to immobilize the
SLM solvent in the hollow fiber in the
shortest amount of time possible before
the extraction. This is done to avoid
partial evaporation of the SLM solvent
and so that the SLM solvent is not gradu-
ally swelled into the polymer itself. With
solvents like dihexyl ether and 1-octanol,
swelling may totally interrupt the SLM
after a few days of storage. Other solvents
have been found to be highly stable as the
SLM solvent, and they may be immobi-
lized for up to 60 days before use. These
solvents include silicone oil AR 20 (poly-
phenyl-methylsiloxane), 2-nitrophenyl
octyl ether, and dodecyl acetate (18).

How Should the Acceptor
Solution Be Loaded?

When the SLM is prepared, the acceptor
solution has to be injected into the lumen
of the hollow fiber. This is accomplished
with a microsyringe. Loading exact and
constant volumes of acceptor solution
from extraction to extraction is important
to obtain the highest repeatability. Make
sure that injection of the acceptor solution
is performed slowly. Rapid injection of the
acceptor solution into the narrow hollow
fiber may cause air bubbles, which results
in small segments of the hollow fiber
containing no active acceptor solution.
Air bubbles in the hollow fiber from rapid
injection can affect the results signifi-
cantly and sacrifice repeatability (18).

How Should the Actual
Extraction Be Performed?
Extraction is initiated at the time when
the hollow fiber, containing both the
SLM and the acceptor solution, is
placed in the sample. Exact timing of
the extraction is important, and the
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time for each extraction should be mea-
sured from the point when the fiber is
placed in the sample. Immediately, the
whole assembly (sample plus the hollow
fiber) should be transferred to an agita-
tor. Agitation (or stirring) is important
to facilitate extraction and constantly
replenish the sample in close contact
with the SLM. Normally, we recom-
mend agitating the entire extraction
unit (sample vial and hollow fiber) at
800-1200 rpm, but stirring with small
magnetic stir bars also may be used.
Normally, HF*LPME is accomplished
at room temperature with no external
temperature control.

How Should the

Extraction Be Finished?

When the extraction has been completed
at an exact stop time, the hollow fiber
should be removed immediately from

the sample to stop the extraction. This

is especially important if extractions are
not carried out to equilibrium as shown
in Figure 3. Additionally, the acceptor
solution should be removed immediately
from the hollow fiber to avoid partial
back-extraction into the SLM and loss of
analyte. The acceptor solution normally is
removed with a microsyringe and trans-
ferred to a sample vial for the final analy-
sis by HPLC or CE. Because the acceptor
solution volumes typically used are low,
the acceptor solution should be protected
from evaporation. Therefore, storage at
low temperature in a closed vial is highly
recommended. When the acceptor solu-
tion is removed from the hollow fiber, it
also is important to check the volume of
the acceptor phase. Occasionally, the vol-
ume collected after extraction is different
compared to what was injected into the
hollow fiber before extraction; this volume
difference is a clear indication of leakage
in the system. In such cases, the acceptor
solution should be discarded.

What About pH Effects?

In HFPPLPME of basic and acidic com-
pounds, the pH of the sample and the
acceptor solution is highly important.
For basic analytes, the pH of the sample
should be high to suppress ionization of
the basic substances and promote their
extraction into the SLM, whereas the pH
of the acceptor solution should be low to
ionize the basic substances upon arrival
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Figure 4: lllustration of a typical
electromembrane extraction (EME) setup.
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Figure 5: Recovery versus voltage for
haloperidol. Supported liquid membrane:
1-isopropyl-4-nitrobenzene; sample:
1 mL of 10 mM HCI containing 1 pg/mL
haloperidol; acceptor solution: 25 pL of
10 mM HCI; extraction time: 5 min.

in the acceptor solution. The latter effect
also prevents the analytes from re-entering
the SLM. The strong pH-gradients across
the SLM serve as the driving force for the
extraction. For basic analytes, we normally
recommend adjusting the pH 1-3 units
above the pK, values of the analytes in
the sample and 1-3 units below their

pK, values in the acceptor solution. Typi-
cally, the sample is made alkaline with
sodium hydroxide, whereas hydrochloric
acid (10 mM) or formic acid (LC-MS
friendly) is used as the acceptor solution
(4). For acidic substances, the pH gradi-
ent is reversed, with acidic conditions in
the sample and alkaline conditions in the
acceptor solution. Usually, hydrochloric
acid is used to acidify the sample, whereas
10 mM sodium hydroxide or ammonia
solution (LC-MS friendly) is used as the
acceptor solution (4).

What About EME?
Electromembrane extraction (EME)
also is an extraction method for basic or
acidic analytes from aqueous samples.
Figure 4 illustrates the setup of EME.

The setup and procedure are very similar
to those used for HF3LPME. In EME,
electrodes are inserted into both the
sample and the acceptor solution and the
electrodes are connected to a dc electri-
cal power supply. In EME, an electrical
potential of typically 5-100 V is applied
over the electrodes, creating an electri-
cal field over the SLM. This electrical
field is the principal driving force for
extraction in EME. For EME of basic
analytes, the anode is located in the
sample, whereas the cathode is placed in
the acceptor solution. The sample has to
be acidified to make sure that the basic
analytes are ionized in the sample. Thus,
the basic analytes are extracted as pro-
tonated species from the sample, through
the SLM, and into the acceptor solution.
The acceptor solution also is acidic to
support the electrokinetic transfer and
to avoid back-extraction into the SLM.
For acidic analytes, the direction of the
electrical field is reversed, and alkaline
conditions are used in the sample and
the acceptor solution to maintain the
analytes in their charged configura-
tion. The advantages discussed above
for HFPLPME are more or less the same
for EME. However, EME is faster than
HF?LPME because the driving force is
an electrical potential rather than a pH
gradient. EME often can be finished
after 5 min. Several reviews have been
published summarizing current applica-
tions of EME (19-23).

The practical details discussed above
for HFPLPME are also valid, more or
less, for EME, but the following differ-
ences are important:

* EME is performed with other solvents
for SLM as compared to HFPLPME.

* EME is performed with pH condi-
tions different from those used in
HFLPME.

* The extraction voltage should be
selected with care in EME.

* The current flowing in the extraction
system should be measured in EME.
For EME of basic substances, sol-

vents such as 2-nitrophenyl octyl ether

(NPOE), 1-ethyl-2-nitrobenzene, and

1-isopropyl-4-nitrobenzene are typi-

cally used (2,24-28). For extraction

of more polar substances, an ion-pair

or another modifier is added to these

solvents to facilitate the mass transfer
of analytes across the SLM. Typical
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examples are di-(2-ethylhexyl) phos-
phate (DEHP) and tris-(2-ethylhexyl)
phosphate (TEHP) (24,29,30). Acidic
compounds have been extracted only a
few times by EME and, in those cases,
1-octanol was used as the principal
SLM (31,32).

The pH conditions in the sample
and in the acceptor solution should be
selected to ensure ionization of the ana-
lytes and promote their electrokinetic
migration across the SLM. Extraction
of basic analytes is carried out under
acidic conditions, typically using dilute
hydrochloric acid or formic acid in
both the sample and the acceptor solu-
tion. However, several basic drugs have
been extracted from physiological pH
(pH 7.4) solutions when they are still
ionized. Acidic analytes are extracted
with alkaline conditions in the sample
or acceptor solution, typically obtained
with dilute sodium hydroxide or
ammonia solution.

In EME, the driving force for the
extraction is the electrical potential,
and this parameter must be opti-
mized. Normally, extraction recoveries
increase with increasing voltage up to
a certain level until there is no further
gain in recovery, as illustrated in Fig-
ure 5. The optimal voltage must be
established by experimental optimiza-
tion, as this voltage is dependent on
both the analytes and the composition
of the SLM. Usually, voltages in the
range of 5-100 V are used. During
EME, the exact timing of the extrac-
tion is important for repeatable data,
and we strongly recommend measur-
ing the current flowing in the system.
This is accomplished by a microam-
meter coupled in series with the cable
from the power supply. We suggest not
operating the system at currents higher
than 100 pA because higher currents
may cause bubble formation in both
the sample and the acceptor solution
because of excessive electrolysis.

Conclusion

This column installment focuses on
practical considerations regarding
HFPLPME and describes the most
important issues for a successful extrac-
tion. The first step in the development
of a new HF?LPME application is the
choice of the hollow fiber, including
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the material, size, and configuration.
When deciding on the SLM, important
factors to consider are the capabil-

ity of the organic solvent to act as an
intermediate extraction medium, the
boiling point, and the water solubility.
Some new experimental data regard-
ing the leakage of the SLM into the
aqueous samples are included in this
column installment; likewise the sug-
gestion of some new organic solvents
that are usable in HFPLPME are
mentioned. The practical steps in an
HEF’LPME procedure are covered in
detail, including the handling of the
dry hollow fiber, preparation of the
SLM, loading of the acceptor solution,
convection of the sample during the
extraction, and finishing the extraction
procedure. The importance of correct
pH in the sample solution and in the
acceptor solution is discussed. The cen-
tral issues mentioned also are highly
relevant in the procedure of EME,
which has been introduced as a faster
alternative to HFPLPME.

Interest in HFPLPME has been
growing for the last decade, although
ready-to-use equipment is still not
commercially available. We hope
that further work in this direction by
instrument manufacturers will help
HFPLPME become a viable extraction
method. Likewise, automation of the
various steps described in this paper
will establish HFPLPME as a useful and
robust sample preparation method in
the future.
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LC TROUBLESHOOTING

Troubleshooting Basics,
Part lll: Retention Problems
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John W. Dolan
LC Troubleshooting Editor

his is the third installment in a

series focusing on some of the

basic principles of troubleshoot-
ing liquid chromatography (LC) meth-
ods. First, we looked at some general
practices for troubleshooting any LC
problem (1). Then we looked at prob-
lems whose symptoms are related to
pressure changes (2). This month, we’ll
concentrate on problems exhibited as
abnormal retention times. As a means
to organize the discussion, let’s look at
situations where retention times are too
long, too short, or inconsistent.

What Controls Retention?

Before we look at specific problems,
let’s take a moment to consider the
things that influence retention. We can
categorize these as the mobile phase,
the stationary phase (column), the
hardware, the environment, and the
sample. Let’s simplify this discussion
and assume that nothing has happened
to the sample, such as degradation or
other chemical changes.

The mobile phase can change because
of an error in formulating it, such as a
mistake in volumetric measurement or
adjustment of the pH. If an error in for-
mulating the mobile phase is suspected,
it is best to make a new batch to see if it
fixes the problem. Some mobile phases
can change over time because of chemi-
cal degradation, selective evaporation of
one component, or microbial growth in
highly aqueous mobile phases. Again,
reformulation is the best way to verify
this problem source. Most of us use on-
line mixing to prepare isocratic mobile
phases. An error in instrument settings
or hardware failure can be the cause
of errors in on-line mixing. Check for
proper degassing and pump operation,

as well as the correct control-program
settings. Sometimes hand-mixed mobile
phases can be used as a check for on-
line mixing, or alternate mixing chan-
nels can be used for both isocratic and
gradient methods (for example, use the
C and D solvent reservoirs instead of A
and B in a four-solvent LC system).

The stationary phase in the column
has a finite lifetime, generally in the
500-2000 sample range (or more),
depending on the nature of the sample.
Every column will die eventually, and
some methods are harder on columns
than others. For example, mobile phases
outside the pH 28 region accelerate
the degradation of silica-based columns.
Some column types have shorter life-
times than others. For example, cyano
and amino columns are unlikely to last
as long as C8 or C18 columns, which
tend to be quite robust. In addition to
changes in retention, column failure
usually is accompanied by a rise in sys-
tem pressure and an increase in peak
tailing. Replacement of a suspect col-
umn with a new one is the easiest way
to check for column-related problems.

System hardware problems that gener-
ate symptoms of changed retention most
commonly are associated with pump
malfunctions or leaks. Pump problems
can be checked with a simple flow-rate
measurement with a stop watch and
volumetric flask. A secondary symp-
tom of pump problems may be high,
low, or fluctuating pressure. Low flow
may be associated with faulty check
valves, worn pump seals, air bubbles in
the pump, or errors in pump settings.
Cleaning, component replacement, or
degassing should correct such problems.
High flow rates usually are a result of
improper settings.
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The most common environmental
cause of retention changes is a change
in column temperature. This effect
is common if the column oven is
not used or is not working properly.
Methods that operate under ambi-
ent conditions are highly susceptible
to failure, especially if the laboratory
temperature is not well controlled. In
my travels, I have encountered labora-
tory temperatures ranging from 10 °C
(central China in January) to 35 °C
(Tel Aviv in June). If we use the rule
of thumb that retention can change
by 2% with each 1 °C change in tem-
perature, you can imagine the result
if the same method were run in both
of those laboratories under ambient
conditions! Use the column oven and
make sure that it is operating properly.

Two Important Measurements
One tool that can be very useful in
diagnosing the source of retention prob-
lems is the retention factor (also called
the capacity factor, £'). Recall that the
retention factor, 4, is calculated as

k= (tg — ty)lt, [1]

where £, is the retention time and
(sometimes abbreviated as #,) is the
column dead time, usually measured
by the first disturbance in the baseline
(the “solvent front”). Another useful
calculation is the selectivity, or relative
retention, o,

o = k,lk, 2]

where k| and £, are the k-values for the
first and second peaks of an adjacent
peak pair, respectively.

Notice that changes in flow rate,
whether intentional or due to a leak,
will change both 7, and 7, proportion-
ally, so % will remain constant for such
changes. On the other hand, chemical
changes will change only fgs SO the £
value is changed, too. Generally, when
the % value is changed it does not
change exactly the same for all peaks
in the chromatogram. One way to con-
firm chemical changes in the system
is to check the a value; if o changes, a
chemical source of the problem is most
likely. Because 4 and « are so useful
in distinguishing between flow-related

and chemical changes, it is a good idea
to make these measurements a part of
the process for troubleshooting reten-
tion-time problems.

Excessive Retention

When retention times increase and
k-values stay constant, a flow-rate
problem is indicated. Double-check
the flow-rate setting to be sure you
didn’t make a mistake. Leaks and
pump problems are the two most
common remaining causes. Check for
leaks throughout the system; these
may or may not be accompanied by
low system pressure, depending on the
magnitude of the leak. Several possible
problems related to the pump could
be sources of increased retention. Air
bubbles in the pump will also cause
pressure fluctuations; thorough degas-
sing of the mobile phase and purg-
ing the pump should correct such
problems. If problems persist, check
to be sure the frit in the mobile phase
reservoir is not restricting flow to the
pump. Faulty check valves or pump
seals also can result in low flow and
long retention times. Sonication of
check valves will usually restore their
function. Pump seal leakage often is
accompanied by liquid dripping from
the drain hole just behind the inlet
check valve on most pumps. Check
the maintenance records — if the
pump seal has been in use for a year
or more, replace it.

When a change in £ values (and
often ) is observed, you have evi-
dence that a change in system chem-
istry is responsible for an increase in
retention. The easiest way to check
this is to make a new batch of mobile
phase. If this does not correct the
problem, replace the column.

A final possible source of increased
retention is a drop in the column tem-
perature. As mentioned above, a 2%
increase in retention for a 1 °C drop
in temperature is common. Based
on the magnitude of the retention
change, you can estimate the tempera-
ture change and see if it is a reason-
able cause of retention. Has the oven
failed, did you forget to turn it on, or
are you relying on ambient operating
conditions? Any of these sources can
account for increased retention.

www.chromatographyonline.com

Retention Is Too Small

When retention times are smaller
than they normally appear, a flow-rate
change is highly unlikely, unless you
made an error in one of the settings.
This is because decreases in flow due
to leaks or other malfunctions are not
uncommon, but there are no corre-
sponding causes that result in higher-
than-normal flow rates that are neces-
sary for reduced retention.

As with retention times that are too
long, do a stepwise elimination of prob-
lem sources by first making up a new
batch of mobile phase. If this approach
doesn’t fix the problem, replace the col-
umn. Temperatures that are higher than
normal will cause a drop in retention;
the sources of temperature problems are
the same as for excess retention.

Fluctuating Retention Times
Usually, an increase or decrease in
retention will not be an abrupt change.
If it is, the cause is likely related to
operator intervention, such as improper
formulation of a new batch of mobile
phase, installing the wrong column,

or changing a column-oven setting.
More commonly, retention will gradu-
ally increase or decrease over tens,
hundreds, or thousands of samples, or
it cycles over a 24-h period. Cycling
retention is commonly correlated with
ambient methods and a laboratory tem-
perature that changes throughout the
day and night.

Retention drift that occurs over hun-
dreds or perhaps thousands of injections
is most likely because of normal column
aging. Drift from column aging usu-
ally will be accompanied by a gradual
increase in pressure and an increase in
peak tailing. Often, a shift in relative
retention also will be observed when
a-values are calculated. If the column is
suspected, replace it to see if the prob-
lem is corrected.

Shorter-term retention drift may be
caused by the mobile phase. Although
fairly rare, it is possible to selectively
evaporate a volatile component of the
mobile phase, especially if helium sparg-
ing is used for degassing. Retention drift
resulting from a pH shift can occur if
the buffer is outside its optimal buffer-
ing region, generally +1 pH unit from
its pK. The use of volatile buffers, as is
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common with LC—mass spectrometry
(MS) mobile phases, may shorten the
stable lifetime of the mobile phase, so
daily reformulation may be a wise prac-
tice. Make up a new batch of mobile
phase if the mobile phase is suspected,
and be sure to adjust the pH before any
organic solvent is added.

Problem Prevention

To avoid retention problems, make sure
to keep the instrument in good operat-
ing condition by servicing it regularly. A
routine preventive maintenance session
should be done on an annual basis at a
minimum, and more often for heavily
used LC systems.

Because column temperature
changes can have such a profound
influence on retention time, it is wise
to always use a column oven. Many
ovens do not control the temperature
well near room temperature; a good
practice is to use a minimum operat-
ing temperature of 30-35 °C so that
good temperature control is ensured.
It may take 30 min or longer for the
column oven to reach a stable tem-
perature. Be sure to use the solvent
preheater that is included with most
column ovens. The most common
preheater implementation is a piece of
capillary tubing that is embedded in
the aluminum block of the oven.

Columns usually will last for
more than 1000 injections. When
this number of samples has been
analyzed, the cost-per-sample for
the column is less than 5% of the
overall per-sample cost of analysis.
My feeling is that at this point it isn’t
worth my time to do anything more
than flush the column with strong
solvent (for example, acetonitrile or
methanol); if this doesn’t restore the
column, replace it. Guard columns or
sample preparation both will extend
the column life, but they have their
associated costs, which may make the
economics of their use questionable.
A 0.5-pum in-line filter between the
autosampler and column will help
keep particulate matter from blocking
the column inlet frit, but it will not
influence retention-related problems.
Another good practice for extending
column life is to use a single column
for each method. When the same

www.chromatographyonline.com

column is used for multiple methods,
sometimes unimportant sample com-
ponents from one method will inter-

fere with another method.

Mobile phases have finite lifetimes,
too. My recommendation is to replace
any buffer at least once a week and
organic-based mobile-phase compo-
nents at least monthly. It is a good
idea to replace the reservoir with a
clean one whenever the mobile phase
is replaced so that prior contamina-
tion doesn’t get transferred to the new
mobile phase.

If you pay close attention to pat-
terns in retention changes, correlations
with mobile-phase use, and column
history, you can establish expected
replacement cycles for each compo-
nent of each method. After such pat-
terns are defined, you can put in place
preventive-maintenance and compo-
nent-replacement practices that will
help you avoid most retention-related
problems. Armed with an understand-
ing of which variable most strongly
influences retention in your particular
method, you’ll be able to more quickly
identify and correct problems when
they occur.
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BIOTECHNOLOGY TODAY

Current Applications of UHPLC
in Biotechnology, Part II:
Proteins and Glycans
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n part I of this two-part series on

the current usage of ultrahigh-

pressure liquid chromatography
(UHPLC) in biotechnology, we intro-
duced the fundamentals of performing
UHPLC and discussed specific applica-
tions for peptide mapping and amino
acid analysis (AAA) (1). Readers are
encouraged to read part I before part II.
There are four major applications areas
where UHPLC has become important
for biotechnology: peptide mapping,
amino acid analysis, intact protein
characterization, and glycan analysis or
glycoprofiling. These applications are
essential analytical challenges in bio-
pharmaceutical development, in which
UHPLC has proven valuable (2-6).
The first two topics were discussed in
part I; here, we will focus on the latter
two (6,7).

Using much smaller particle diameter
packing materials, and shorter or nar-
rower columns, has improved virtually
all chromatography for larger proteins
or antibodies, as well as for their smaller
cousins. Such trends will, of course,
continue into the future. When using
UHPLC for biotechnology applications,
perhaps the very first areas of emphasis
have been intact proteins, especially
mixtures of protein variants in a drug
substance (DS), or antibody variants,
isoforms, or glycoforms.

The structure of intact proteins
presents a difficult analytical problem
because the pharmacological activity of
these large molecules is altered by small
chemical changes to the protein. The
modifications affect a tiny fraction of
the chemical properties, so it is neces-
sary to use multiple modes of separa-
tion to detect and measure them. The
common approaches of reversed-phase

chromatography, size-exclusion chroma-
tography (SEC), and ion-exchange chro-
matography (IEC) are now available in
UHPLC.

The reversed-phase high perfor-
mance liquid chromatography (HPLC)
of intact proteins, especially large
molecules such as antibodies, is usually
characterized by broad, diffuse, and
poorly resolved peaks, with low plate
counts and often large asymmetry
values. These molecules are the “bad
actors” of HPLC because their high
molecular weights, slow mass transfer,
and low diffusion coefficients lead to
large peak volumes. Specific chemical
interactions also degrade the analysis
through mixed modes of separation
(hydrophobic and hydrophilic patches
and ionic binding), as well as poor
solubility in most HPLC solvents.
When UHPLC materials were being
developed for proteins, it was efficient
to consider both implementation of
small particles with shorter diffusion
distances and optimized particle chem-
istry for reduced chemical interactions.
As illustrated in some of the figures in
part I, this combination has facilitated
using UHPLC for proteins or anti-
bodies. For example, Figure 1 in this
installment compares two different
columns with the same base particle,
bonded phase, and bonding chemistry,
operated under identical conditions in
two different particle sizes: 3.5 pm and
1.7 pm. It is a controlled comparison
between conventional HPLC (3.5-pm
particles) and UHPLC (1.7-pum par-
ticles). The relative retentions for all
of the peaks are the same in the two
chromatograms, but more resolution
is apparent with the smaller particles.
The sample consists of light chains
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Figure 1: UHPLC separation of light and heavy chains of a reduced and partially
alkylated monoclonal antibody (IgG). (Reprinted with permission from reference 8.)
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Figure 2: In reversed-phase UHPLC, there is an effect of pore size on resolution
and peak shapes possible for a typical mixture of proteins, as indicated. Peaks: 1 =
ribonuclease, 2 = cytochrome ¢, 3 = bovine serum albumin (BSA), 4 = B-lactoglobulin,
5 = enolase, 6 = phosphorylase b. (Reprinted with permission from reference 8.)

(LC) and heavy chains (HC) of an
antibody (immunoglobulin, or IgG)
with the heavy chains having different
degrees of glycosylation or modifica-
tions (post-translational modifications,
or PTMs). In addition, the sample
was reduced and intentionally alkyl-
ated only partially to further increase
the sample heterogeneity as a test of
chromatographic resolving power. The
improved resolution with the UHPLC
packing material and instrumentation
is apparent. It also should be noted
that the run time could be reduced

by using different dimensions of the
columns. Thus, the area of intact

proteins remains one of the four most
important applications of UHPLC in
use today. It will surely remain so in
the future.

Intact protein profiling via UHPLC
serves several functions in regulatory
submittals. It provides a chromato-
graphic profile of the number of vari-
ants present and their relative ratios
(percent peak areas), and it helps to
define lot-to-lot variations among dif-
ferent production batches. It is impor-
tant that each peak in such a DS profile
be uniform, homogeneous, and a single
variant, if possible. Such intact protein
profiling then defines a “typical” pro-
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duction batch, as well as batch-to-batch
variations and their limitations. It also
is a very important and reliable applica-
tion for comparing biosimilars and
proprietary drug substances.

The other major application area we
will emphasize in this installment is
glycan analysis or glycoprofiling. The
sugars that are attached to proteins
have profound effects on the biological
properties of proteins, including bind-
ing specificity, stability, affinity, and
potential immunogenicity. The analysis
of oligosaccharides derived from gly-
coproteins or antibodies is, therefore, a
fundamental required characterization
test. The biosynthesis of pharmaceuti-
cal proteins yields a mixture of proteins
with the same amino acid sequence, but
with variable glycans attached. Because
the vast majority of biotechnology-
derived DSs today contain glycoforms
as the variants, it has become de rigueur
for any regulatory submittal to define
the nature of glycans found in the
preparation of glycoproteins. This
characterization includes determin-
ing the distribution of all the glycans
found in the sample, the proportions of
each protein glycoform, and the loca-
tion or position of attachment of the
glycan to specific amino acids in the
protein backbone. The proportion of
the glycoforms is most often measured
using intact-protein liquid chromatogra-
phy—mass spectrometry (LC-MS), and
points of attachment are characterized
as part of peptide mapping, as discussed
in part I of this column. Glycan analysis
or glycoprofiling really refers to describ-
ing all the oligosaccharides or monosac-
charides (if any) that are found on a
total mixture of glycoproteins, as well as
their relative or absolute amounts.

Each oligosaccharide must be struc-
turally defined or sequenced, often
versus authentic reference standards,
and chromatograms must be provided
in a submittal that shows the glyco-
profile of the glycoproteins versus
authentic reference standards of the
glycans found. A glycan is an oligosac-
charide, often composed of different
monosaccharides and exhibiting exten-
sive branching. These PTMs can be
N-linked or O-linked, depending on
the protein and on the cell system used
for synthesis. A recombinant protein to
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Figure 3: Effect of varying bonded phase chain length in reversed-phase UHPLC
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Figure 4: Size-exclusion chromatography of standard proteins in UHPLC. (Reprinted

with permission from reference 8.)

be used as a biotherapeutic will always
be a mixture of glycoforms reflect-

ing the heterogeneity of the attached
glycans. For analysis, the sugars are
released by chemical or enzymatic
methods. The released glycans are
then qualitatively and quantitatively
analyzed. There are numerous meth-
ods now available for glycoprofiling,
but two have become more popular
than others. The two popular, or com-
mon, techniques are high performance
anion-exchange chromatography

with pulsed amperometric detection
(HPAEC-PAD) and hydrophilic liquid
interaction chromatography (HILIC)
with fluorescence detection of deriva-
tized sugars. Often, these and other
techniques are applied to initially
derivatized glycans.

As with intact protein profiling,
glycoprofiling serves several functions
in regulatory submittals. It defines
the nature of the glycan pool that is
present, as another way to structurally
define the mixture of glycoproteins or
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others. It helps to demonstrate chemi-
cal equivalency, lot-to-lot, for release
testing, and it can be very useful when
comparing biosimilars to innovator gly-
coprotein DSs or drug products (DPs).
It also provides a demonstration that
the drug production process is within
certain tolerance limits of variabilities.
If the glycoprofiling finds a certain
mixture of glycans present, then these
also must be found on one or more of
the glycoproteins in the DS. It is often
possible to define the exact amino acid
sequence, as well as glycan and glycan
locations on every variant in a glycopro-
tein DS. These must agree, batch-to-
batch, or else something is amiss in the
production process.

Intact Protein Analysis
As mentioned in part I and above,
there are serious challenges for suc-
cessful protein separations. In general,
reversed-phase HPLC applications have
been less than ideal, in terms of final
peak shapes, efficiencies, resolutions,
and peak capacities. Success requires
the detection of small chemical dif-
ferences, often between quite large
molecules (molecular weight, size,
and shape). Successful UHPLC now
employs a variety of analytical tech-
niques that are sensitive to different
properties of the proteins (hydropho-
bic, hydrophilic, ion exchange, hydro-
gen bonding, and others). Currently,
the most popular techniques are IEC
for changes in net charges of the pro-
teins (salt or pH gradients are popular);
SEC for changes in size or aggregation;
and reversed-phase chromatography
for detecting a wide range of small
changes in the proteins. Success in
each of these modes depends on choos-
ing the ideal packing material, particle
size, pore size, length of ligand (C18
versus C4), mobile phase, gradients,
flow rates, temperature, and other vari-
ables available in UHPLC. In develop-
ing reversed-phase UHPLC protein
separations, it was not sufficient to
just use sub-2-um particles. It also was
necessary to re-examine the proper-
ties of the base particle, the pore size,
the bonded phase, and the bonding
chemistry (9-11).

Figure 2 illustrates the chromato-
graphic differences as a consequence of
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Figure 6: Size-exclusion chromatography-UV-MS analysis of a reduced and
alkylated monoclonal antibody, showing both UV and MS (total ion chromatogram)
chromatograms and mass spectra for both heavy chains and light chains (12).

pore size in the packing material for the
same mixture of proteins and mobile
phase conditions (8). The larger pore
size leads to improved peak shapes and
narrower peaks, with minimal effect on
selectivity. However, some proteins still
do not give the sharp symmetrical peaks
expected for UHPLC. For example,
peak 3 in Figure 2 is bovine serum
albumin (BSA), for which the separa-
tion includes several variants that are
coeluted under this one, broadened
peak. This is not a characteristic of the
UHPLC conditions, but rather a reflec-
tion of the limitations of reversed-phase
mechanisms to discriminate among
small chemical changes on a very large

molecule. However, larger pore sizes
generally allow the proteins to diffuse
more freely and rapidly in and out of
the pores, where the majority of the
interactions with the bonded phase
occur. Differences in distribution coef-
ficients and mass transfer of the proteins
can thereby effect overall improved
peak shapes and improved separations.
It is really a matter of the proteins being
able to approach equilibrium interaction
with the surface ligands of the bonded
phase. Unfortunately, it is not possible
to suggest a molecular weight limit

in which the separation must be done
on 300-A pore packings. The protein
assumes a three-dimensional structure
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that is usually larger than the native
protein (but different for every protein
sequence) because of the disordering

of the protein structure at low pH in
relatively high concentrations of organic
solvents.

A similar set of experiments exam-
ined the effect of varying the bonded
phase chain length (C18 versus C4),
again in reversed-phase-UHPLC, on the
peak shapes for a mixture of standard
proteins (Figure 3) (8). In this particu-
lar illustration, all peak shapes, peak
narrowness (asymmetry factor), peak
heights, resolutions, and plate counts
are improved by going to the smaller
C4 chain length (all other particle and
mobile-phase conditions were identical).
With large proteins, their interactions
with very hydrophobic ligands, such as
C18, lead to slower mass transfer, stron-
ger hydrophobic—hydrophobic interac-
tions with the proteins, and thus peak
tailing, loss of peak shape, and loss of
efficiency, as well as overall decreased
resolutions. With much smaller pep-
tides, C18 is usually the stationary
phase of choice, but for larger proteins,
C4 or even C3 is preferred for all of
the reasons stated earlier. It is impor-
tant, however, to recognize that there
is no obvious cutoff molecular weight
whereby analysts should automatically
choose the shorter chain bonded phase.
As with pore size, this observation is
related to the sequence-dependent disor-
dering of protein structures.

An additional operational param-
eter to consider is that mass transfer is
often improved at higher temperatures.
The kinetics of equilibrium between
the mobile and stationary phase are
faster because of a reduced viscos-
ity and resistance to flow, leading to
improved mass transfer effects. Recov-
eries tend to be improved at elevated
temperatures. For these reasons, it is
often suggested that reversed-phase
separations be performed at 70 °C.
However, some proteins show worse
peak shapes at the higher temperature.
The chromatographic behavior of pro-
teins at low pH and with organic sol-
vents reflects a complicated interplay
among mass transfer, solubility, and
the equilibrium of disordered struc-
tures. Good practice seems to favor
testing each sample at both low and
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high temperatures, perhaps 45 °C and
75 °C, to identify the range to be used
for optimizing the final separations.
Several other operational parameters

are of importance in the reversed-phase-
UHPLC analysis of proteins. Acidic
mobile phase modifiers (formic acid,
trifluoroacetic acid, and others) are gen-
erally used and higher concentrations of
these reagents lead to better peak shapes

and resolutions. Trifluoroacetic acid is
preferred for the best peak shape and
resolution, and formic acid gives better
sensitivity and spectral quality with MS
detection.

The effects of flow rate and column
length also can be useful and have the
expected effects on resolution. In the
case of column length, longer columns
usually lead to improved or better
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resolution of proteins. Lower flow rates
improve peak shapes and resolution
because the large protein molecules
diffuse slowly in and out of the pores.
This effect has been underutilized in
developing protein separations because
the run times increase significantly. It
has often been observed, however, that
a shorter column at lower flow rates will
outperform a longer column at scaled
flow rates that give the same run time.
Computerized method development
software routines, usually commercially
available today, can also be useful for
systematically optimizing UHPLC
conditions (9—11).

SEC has traditionally been a critical
tool for the analysis of biopolymers.
UHPLC columns for this separation
mechanism are just now becoming
available. Perhaps the eatliest players
in biopolymer separations were pack-
ings such as Sephadex or Sepharose,
polysaccharides, that were used in
open-column, low-pressure biopoly-
mer separations on semipreparative
and preparative scales. Analytical
SEC became popular at least 40 years
ago, with the introduction of HPLC
columns with hydrophilic coatings or
bonded phases on silica particles. More
recently, packings have been intro-
duced at the UHPLC scale that are
able to withstand high back pressures,
higher temperatures, and higher flow
rates, and they can resolve proteins,
aggregates, antibodies, and fragments
in one analysis. Although SEC has
traditionally been a low-resolution
technique because of the size and slow
mass transfer of these analytes (often
with extensive band broadening), mod-
ern size-exclusion UHPLC gives sub-
stantially better resolution in shorter
run times. Figure 4 illustrates a typical
separation of four proteins, ranging
in molecular weight from 17,000 to
669,000 Da, along with a completely
included, low-molecular-weight ana-
lyte, uracil. The four proteins are all
baseline resolved in under 5.50 min,
which is considerably less than what
has been possible with conventional
size-exclusion HPLC, for the very same
proteins. Peak shapes are excellent
with very low asymmetry factors, high
plate counts, and baseline resolution in
under 5.50 min. This is truly excellent



H3IEHAa1Vv-vYINSIS

"95J9A3J UO s|1e1aQ Ae|dsiq 143 U] ,9 “I4-IM
'$d|PUIY B 9AIDDI PUR 3|pung SIA-)T N0 JO UOIRUIGUIOD
AUe Ul I9PJO 3UO Ul 00G LS JO WNWIUIW B 3SeYDINd,

sjuabeay
Y

daud sjdwes

‘sisAjeueolq ul AUARISUSS pue paads
S9Z|WIXew 3|pund SIN-D7 Yaup|y-ewbis ay |

A2|PUDY B 195
'9|pung e Ang




(ySuPELCO
(W Fluka

Analytical

The Sigma-Aldrich LC-MS Bundle includes:

Columns
Ascentis® Express Fused-Core® HPLC Columns
for fast and sensitive HPLC

Sample Prep
HybridSPE®-Phospholipid 96-Well Plates
for complete phospholipid removal

Supel™-Select HLB, SCX and SAX SPE Tubes
for ultra-clean sample prep

Reagents
‘ LGMS CHROMASOLV® High-purity Solvents and
Blends for sensitive, trouble-free operation

Offer details:

4.
5.

Call 1-800-325-3010 to place your order. Reference Promotion Code 483.

Void where prohibited by company policy.
(5150 discount can be substituted in place of Kindle).

Valid in the US and Canada only.
Limit one offer per customer.
Offer valid through January 31, 2012.

Visit sigma-aldrich.com/bioanalysis for detailed part numbers and ordering
information on the applicable products.

©2011 Sigma-Aldrich Co. All rights reserved. SIGMA-ALDRICH, SUPELCO, Ascentis, HybridSPE, and
CHROMASOLY are registered trademarks of Sigma-Aldrich Co. LLC. Kindle is a registered trademark of
Amazon.com, Inc. or its affiliates. Amazon.com is not a participant or sponsor of this promotion.

SIGMA-ALDRICH"




www.chromatographyonline.com

10 15 20

———ve

30 40 50 60

70 80

Figure 9: Comparison of a conventional 3-um HPLC column with a 1.7-um UHPLC
column for the analysis of 2-AB labeled glycans from human IgG. Column: Waters
BEH glycan (HILIC). (Reprinted with permission from reference 21.)

size-exclusion UHPLC, perhaps the
very best ever demonstrated and far
superior to conventional size-exclusion
HPLC.

SEC has become a very important
technique in biotechnology, in part,
because it is able to resolve high-
molecular-weight aggregates of proteins
and especially of antibodies (see Figure
5). Aggregates (also termed associates),
in general, are noncovalent clusters of
a monomer, which are usually formed
in equilibrium with the monomer as a
function of temperature, time, solvent
conditions, and even pressure. Figure
5 illustrates the ability of modern
size-exclusion UHPLC to resolve fully
to the baseline all aggregates present,
even at 1.12-1.22% composition versus
the monomer. These are almost all
baseline resolved. Aggregates can be
dimers, trimers, and higher order spe-
cies of the monomer, or mixed aggre-
gates with various combinations of
heavy and light chains (IgG) present.
These are usually considered impurities
of the DS, often being immunogenic.
Regulatory agencies want to know how
many and how much of these aggre-
gates are present in the final DP and
if they are immunogenic in humans.

They also can ask to have such aggre-
gates removed before the DP can go to
market (12).

For characterization of the peaks
observed in SEC, both multiple angle
light scattering (MALS) and MS,
readily interfaced with UHPLC, can
provide molecular weight informa-
tion (15). When considering the use of
information-rich detectors with SEC,
it is important to remember that the
technique measures the size and shape
of a protein in solution. It has the great
advantage that the separation can be
conducted under the conditions where
the native, biologically active structure
is maintained. However, those separa-
tion conditions may be inconsistent
with the best performance of the detec-
tor. And, of course, the optimal condi-
tions for detection may disturb the
protein’s structure. This is particularly
relevant for MS detection, which per-
forms best in a volatile mobile phase at
low pH with relatively high concentra-
tions of organic solvent. SEC can be
performed under these conditions, but
the observed elution volume will no
longer reflect the structure of the pro-
tein as it existed in its native, biologi-
cally active state.
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Despite this, there is value in SEC-
MS. As shown in Figure 6, the SEC
separation of a reduced and alkylated
monoclonal antibody can be executed
in a mobile phase that is optimal for
electrospray ionization (ESI) (12).

The heavy chain, light chain, covalent
dimers, and clips are conveniently
separated, and the mass of each is
measured. This analysis is very use-
ful for high-throughput assays such as
reaction monitoring or fraction screen-
ing. There is no requirement for gradi-
ent re-equilibration and no need to
develop methods for specific samples
in this approach. Although SEC-MS
is not a direct path to characterizing
structural variants, it is still a source of
valuable information about the protein
sample (12).

The fundamental question in bio-
pharmaceutical analysis is the composi-
tion of the original sample, with respect
to protein three-dimensional structure,
and especially aggregation. Several
approaches to this problem, alone or
in conjunction with SEC, are avail-
able. Perhaps in a future “Biotechnol-
ogy Today” column we will discuss at
greater length the advantages of using
MALS, SEC-MALS, analytical ultra-
centrifugation, and field-flow fraction-
ation for both protein monomer and
aggregate studies.

IEC is the third significant chro-
matographic separation mode applied
to biopharmaceutical characterizations.
To date, true UHPLC packing materi-
als suitable for protein separations have
not become commercially available.
New materials, however, have been
introduced by several manufacturers
that give higher resolution chromatog-
raphy than was available even a few
years ago. These materials represent
recent advances in surface chemis-
try that maximize protein selectivity
and minimize secondary interac-
tions. These materials also exhibit the
reduced band-broadening characteristic
of UHPLC on sub-2-pm particles.

But all of the materials use large par-
ticles that mimic superficially porous
materials by one of several, proprietary
mechanisms. These modern pack-

ings do offer improved resolution of
complex protein samples, as shown in

Figure 7 (13).
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Table I: Advantages of UHPLC for biopharmaceutical analysis

Improved molecular diffusion and mass transfer

Improved peak efficiencies (N) and plate counts

Lower HETP values

Sharper and narrower peaks, narrower bandwidths

Improved peak symmetry values

More symmetrical peak shapes

Greater peak capacity

Improved baseline peak resolutions

Faster sample throughput

Shorter analysis times

Greater productivity (number of samples per hour)

Shorter retention times

Reduced solvent and sample usage

Reduced instrumentation time per sample

Reduced analysis costs per sample

Ability to perform faster and improved separations in all types of chromatographic
separations — SEC, IEC, reversed-phase chromatography, HILIC, and others

It also is interesting to observe that
IEC analysis of proteins has ben-
efited from the recent developments
in instrument design and control
that began as refinements to meet
the requirements of UHPLC separa-
tion mechanisms. Dispersion in the
sample fluid path was minimized and
more exact control of mobile-phase
delivery was established. This has
been extended to method program-
ming tools that are specific to protein
chromatography today. Because pro-
tein separations are most effectively
adjusted by optimizing pH and ionic
strength, it proved useful to develop
algorithms (Auto-Blend Plus Technol-
ogy, Waters Corporation, Milford,
Massachusetts) that allow program-
ming of four solvent pumping systems,
directly in units of pH and salt con-
centration, as shown in Figure 8 (14).

We have now considered three ways
to analyze proteins. Each is based on
different properties of the molecules, so
all are employed to help ensure com-
plete characterization of the different
kinds of variation that can occur in pro-
tein structures. Now, let’s move on to
describe the analysis of one of the most
important kinds of PTMs of biophar-
maceutical proteins today — the attach-
ment of glycans.

Glycoprofiling (Glycan Analysis)
As mentioned above, a key analytical
technique that has become required in
virtually all regulatory submittals of
glycoproteins involves total glycan and
monosaccharide analyses. In general,
glycoproteins contain glycans, or oli-
gosaccharides (sugars), and usually do
not contain attached monosaccharides.
Characterization of any glycoprotein
requires the determination of the sugars
that are present, measurement of their
configurations as glycans, determina-
tion of the site or sites of attachment on
the protein, and finally, the distribution
of glycoforms (also known as variants,
PTMs, or isoforms) of the protein within
the sample.

One of the quality control and char-
acterization methods available today
first releases all bound glycans (or
just N-linked glycans first), and then
digests or hydrolyzes the freed glycans
into their monosaccharide constitu-
ents. Then, the monosaccharides are
monitored by a variety of accepted tech-
niques, including HPAEC-PAD; fluo-
rescence derivatization of monosaccha-
rides followed by HPLC with UV and
fluorescence detection; or permethyl-
ation followed by gas chromatography—
mass spectrometry (GC—MS) analysis
of the derivatized sugars (16,17). The
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qualitative and quantitative analyses
for these monosaccharides then become
lot-release and comparative assays to
demonstrate consistency of production
of the glycoprotein DS. It also serves to
confirm the nature of the components
in the DS, because any changes in spe-
cific glycoprotein components would
change the nature of the monosaccha-
ride profiling. Today, monosaccharide
analysis is a routinely used method to
confirm lot-release consistency for indi-
vidual glycoproteins or mixtures.

To obtain more-complete informa-
tion on the biological properties of the
glycans, it is necessary to describe how
the monosaccharides are assembled into
the oligosaccharides on the surface of
the protein. This description ultimately
specifies the various compositions,
sequences, chain lengths, linkages, and
branching. This complicated analysis,
true glycoprofiling (also known as
glycan analysis), typically combines sev-
eral kinds of information for complete
characterization. The process begins
with release of the N- or O-glycans by
either chemical or enzymatic means.
All glycans can be released together
using base-catalyzed hydrolysis of intact
glycoproteins or by hydrazinolysis. For
characterizing biopharmaceuticals,
N-linked glycans are usually the focus
of analysis, and they are commonly
released using specific enzymes, par-
ticularly PNGase F or G.

There are numerous methods for
identifying these released glycans and,
then, generating a glycoprofile. These
now-routine assay methods are like
other chromatographic assays in that
the sample in question can often be
compared to an authentic standard of
pure, characterized glycans at known
concentrations. As with all assays,

a more elaborate validation process,
including multiple kinds of informa-
tion, supports the standard in use and
the identification of the components
derived from the glycoproteins. Several
separation techniques have by now
proven suitable for assaying biophar-
maceutical glycoproteins, as explained
below.

HPAEC-PAD was the first rou-
tine assay method developed several
years ago. More recently, techniques

involving HPLC and UHPLC or high
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Figure 10: UHPLC analysis of 2-AB glycans derived from ribonuclease B glycans.
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under the same gradient conditions. (Reprinted with permisison from reference 21.)

performance capillary electrophoresis
(HPCE) have become common and
accepted. There is significant literature
describing HPCE of glycans that can be
located through the Beckman Coulter
(Indianapolis, Indiana) web site (18).
Other analytical instrument vendors
also offer HPCE instrumentation and
applications for glycoprofiling (for
example, Agilent Technologies in Santa
Clara, California).

However, the prevailing analytical
methods invoked by most biotechnol-
ogy firms involve some form of tag-
ging the released glycans with UV- or
fluorescence-active reagents, followed
by appropriate UHPLC separations
(reversed-phase chromatography, IEC,
or HILIC) (19,20). In general, there
is a great deal of literature on HPLC
methods for providing a glycoprofile,
usually with some form of organic tag-
ging before separation and detection
(16,17). Perhaps the most common
reagent in vogue today is 2-amino-
benzamide, or 2-AB. 2-AB and other
commonly used reagents are compat-
ible with fluorescence detection for
best sensitivity, which is why UHPLC
with fluorescence detection is rapidly
becoming the standard method for gly-
coprofiling (Figure 9). Again, UHPLC
conditions provide a reduced total elu-
tion time compared with conventional
HPLC, improved resolution, improved
peak symmetry and shapes, higher

peak capacity, and the other attributes
indicated in Table I.

There are several ways to identify the
individual glycans in a chromatogram,
as illustrated in Figure 9. One approach
is to inject a known mixture of tagged
glycan standards that are expected
or known to be found in the specific
sample, and then compare elution
times and peak shapes. Peak identifica-
tion can be confirmed by coupling the
separation with both UV—fluorescence
and ESI-MS detection. The MS system
would provide the molecular weight of
cach 2-AB glycan, from which the par-
ent glycan is readily derived, and this
is then compared with the molecular
weights of the known, standard glycans.
Unequivocal identification of the peaks
is not always possible, because many of
the biologically significant structural
variations have isobaric linkage and
positional isomers. However, usually
the high-resolution MS fragmentation
patterns, especially cross-ring glycan
fragmentations, are different for isobaric
structural variations and they can be
differentiated. Fragmentation patterns
using collisionally induced dissocia-
tion (CID) or electron transfer disso-
ciation—electron capture dissociation
(ETD-ECD) of the intact 2-AB glycans
do not always distinguish these isobaric
isomers. The MS data can be described
as consistent with a proposed glycan
structure, but that must be combined
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with other analytical determinations to
provide absolute confirmation of their
structures.

Many techniques are commonly
used for complete determination of
glycan structure as a part of validat-
ing the routine assay. This topic
really ranges beyond the scope of this
review, but we can briefly mention
some of the common choices. One of
the most powerful techniques is enzy-
matic (exoglycosidase) digestion of the
tagged glycan, releasing one end-group
monosaccharide at a time, and deter-
mining the shifts in elution times and
molecular weights (with online ESI-
MS) for the original glycan. By using a
combination of enzymes with different
specificity, both the sequence and the
linkages can be deduced. Naturally,
MS is a convenient and very popular
tool for the characterization. It is used
in combination with suitable databases
and fragmentation patterns of stan-
dard, known glycans that are already
well derived. Both matrix-assisted laser
desorption—ionization time-of-flight
mass spectrometry (MALDI TOF-MS)
with in-source decay (ISD) off-line
and HPLC-ESI-MS-MS have by now
been well developed to enable sequenc-
ing and absolute identification of all
known glycans found in natural or
recombinant glycoproteins or antibod-
ies. Ultimately, however, the descrip-
tion of the glycan profile is based on a
knowledge of the enzymes present in
the cell that synthesized the protein,
enzymatic digestion, and often isola-
tion of the glycan, followed by MS and
nuclear magnetic resonance (NMR)
spectroscopy.

UHPLC techniques have brought
improved resolution and reliability to
the assay of released glycans. As shown
in Figure 9, the methods are better
than comparable HPLC techniques.

It should be noted that this useful
assay is based on HILIC rather than
reversed-phase chromatography. To
achieve this performance, it was not
sufficient to just use smaller particles.
Rather, a new packing material was
synthesized to be compatible with

the small particles and higher pres-
sure operation, while having improved
selectivity for the important glycans.
The percent peak areas or their ratios,
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in Figure 9, can then be used to char-
acterize a specific glycoprofile for the
released glycans that were first derived.
This, then, becomes characteristic of
that individual or mixture of glyco-
proteins and is suitable for lot-to-lot
(batch-to-batch) comparisons and
demonstration of chemical equivalen-
cies of biosimilars, in part.

Figure 10 illustrates a different mix-
ture of 2-AB glycans, these coming from
ribonuclease B protein (21). The open
circles and dark squares represent dif-
ferent monosaccharides linked together
to yield the glycans indicated. There are
any number of other monosaccharides
possible in glycans derived from other
glycoproteins. Some glycans are bianten-
nary, some are triantennary, and some
are higher order, branched chains. The
inset figure in Figure 10 illustrates three
distinct glycans for the three isomers
possible for this triantennary glycan.

There are innumerable arrays of pos-
sible glycoprofiles possible for other gly-
coproteins, mixtures of glycoproteins,
mixture of antibodies, fusion proteins,
and others. And, each such glycopro-
file, as shown in Figures 9 and 10,
then becomes unique for that specific
glycoprotein or any mixture of other
glycoprotein variants. It is not only
an issue of qualitative identification
of each glycan present on the original
DS, but also the relative percent peak
areas of each such glycan, that then
characterizes the original DS. And,
that is what really becomes extremely
useful in demonstrating batch-to-batch
consistency of production or isolation,
as well as showing that the expression
system and production purification pro-
cesses remain constant, lot-to-lot. These
same techniques are proving extremely
useful in comparing biosimilars with
proprietary DS or DP. These are crucial
points to make in any submittal to a
regulatory agency.
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In this study, a solid-phase extraction (SPE) procedure is described for the
analysis of phenazepam in whole blood. Extraction was performed using
a mixed-mode SPE column. Samples of whole blood were diluted with
aqueous phosphate buffer (pH 6). After loading the diluted sample onto

the SPE column, the sorbent was washed with deionized water, acetic

acid, and methanol. After drying the SPE columns, the analytes were

eluted from the SPE column with 3 mL of an elution solvent consisting of

methylene chloride, isopropanol, and ammonium hydroxide. The eluates

were collected, evaporated to dryness, and dissolved in mobile phase (100

pL) for analysis by liquid chromatography-tandem mass spectrometry

(LC-MS-MS). Chromatography was performed in gradient mode using a C18

column and a mobile phase consisting of acetonitrile and 0.1% aqueous

formic acid. The total run time for each analysis was 5 min. The limits of

quantitation and detection for this method were determined to be 1.0

ng/mL and 0.5 ng/mL, respectively. The method was found to be linear

from 1.0 ng/mL to 100 ng/mL (r? > 0.995). Recoveries of the phenazepam

were found to be greater than 90%.

henazepam  (7-bromo-5-[2-

chlorophenyl]-1,3-dihydro- 2H-1,4-

benzodiazepin-2-one) (Figure 1)
is a benzodiazepine-type drug that was
developed in the former Soviet Union and
is now produced in Russia and some other
countries (1). Phenazepam is used in the
treatment of neurological disorders such as
epilepsy, alcohol withdrawal, and insom-
nia (2), but it is now becoming a drug of
interest to the forensic community because
of its reported misuse (3). It can be used
as a premedication before surgery because
it augments the effects of anesthetics and
reduces anxiety. Phenazepam is available as
a 0.5-mg tablet, and the maximum daily
dosage should not exceed 10 mg (2). The
possible side effects of using phenazepam
include dizziness, loss of coordination, and
drowsiness, along with anterograde amne-
sia that can be quite pronounced in high
doses (4). As with other benzodiazepines,

in case of abrupt discontinuation following
prolonged use, severe withdrawal symp-
toms may occur including restlessness,
anxiety, insomnia, and convulsions (5).
The metabolism of phenazepam in several
species of mammals including humans has
been known since the 1980s, when it was
reported (6) that after oral administration
(human) peak blood concentrations of the
parent drug were achieved in 4 h and had
a half life (#,,,) of 60 h. The authors of
the study observed that the conversion of
phenazepam to the metabolite 3-hydroxy-
phenazepm is not significant in humans;
thus phenazepam is the main analyte of
interest for forensic toxicologists because its
use and misuse is becoming prevalent (3).
Phenazepam has been determined in bio-
logical fluids by gas chromatography—mass
spectrometry (GC-MS) (7) and GC using
nitrogen specific detection (NPD) (8) as
well as liquid chromatography—tandem
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mass spectrometry (LC-MS-MS) (9), fol-
lowing liquid-liquid extraction (LLE).
This article is (to our knowledge) the first
report on the continent of North America
of phenazepam in a drugs-and-driving case
employing mixed-mode solid-phase extrac-
tion (SPE) and LC-MS-MS. A recent
report has been published in Europe for the
analysis of this drug in Finland (10).

Experimental

Chemicals and Reagents

Phenazepam was obtained from Lipomed
(Cambridge, Massachusetts) as a 1-mg/
mL methanolic solution. The internal
standard (diazepam-4;) was purchased
from Cerilliant (Round Rock, Texas) as
a 100-pg/mL methanol solution. Aceto-
nitrile, acetic acid (glacial), concentrated
ammonium hydroxide solution (32% by
volume), formic acid, isopropanol, metha-
nol, and methylene chloride were obtained
from Fisher Scientific (Pittsburgh, Penn-
sylvania). The SPE columns (CSDAU206)
were obtained from UCT Inc. (Bristol,
Pennsylvania). Deionized (DI) water was
laboratory grade and was generated in the
Massachusetts State Police Crime Labora-
tory (MSPCL). The water was produced

o)

HN

Cl

Br

Figure 1: The structure of phenazepam.

by passing water through mixed-bed ion-
exchange filters followed by ultraviolet
light radiation; the resulting deionized
water had 18-M(Q resistance. All chemi-
cals were of ACS grade.

Acetic acid was prepared as a 1.0 M
solution by diluting glacial acetic acid
(58.0 mL to 500 mL), making it up to 1
L with DI water, and mixing well. For-
mic acid was prepared as a 0.1% (v/v)
solution by adding 1 mL of the acid to
900 mL of DI water and diluting to 1 L.
Acetonitrile containing 0.1% formic acid
(v/v) was prepared by adding 1 mL of for-
mic acid to 900 mL of acetonitrile and
diluting to 1 L. Phosphate buffer (pH 6,
0.1 M) was purchased from Fisher Scien-
tific as a ready-to-use solution.

Chromatographic Analysis

Analysis was performed using an API 3200
Q-Trap instrument supplied by Applied
Biosystems (Foster City, California). The
chromatographic system consisted of a
Shimadzu CBM 20 A controller, two
Shimadzu LC 20 AD pumps including
degasser, a Shimadzu SIL 20 AC autosam-
pler, and a Shimadzu CTO AC oven (set at
10 °C) (Shimadzu Scientific Instruments,
Columbia, Maryland). The instrument was
ficted with a 50 mm X 2 mm, 5 pm Imtake
US-C18 column from Silvertone Sciences
(Philadelphia, Pennsylvania), which was
attached to a Unison US-C18 guard col-
umn (5 mm X 2 mm) obtained from the
same supplier. The LC system’s column
oven was maintained at 40 °C throughout
the analyses. The injection volume was 10
pL. The mobile phase consisted of solvent
A, DI water containing 0.1% formic acid,
and solvent B, acetonitrile containing 0.1%
formic acid. The mobile phase was deliv-
ered at a flow rate of 0.5 mL/min. The
mobile-phase gradient was programmed as
follows: 5-90% B in 4.0 min, then the pro-
portion of solvent B was returned to 5.0%.
The instrument was ready for reinjection
after 5.1 min.
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The mass spectrometry was performed
onanAPI3200 QTRAP system using mul-
tiple reaction monitoring mode (MRM).
The following transitions were monitored
(quantification ions underlined): m/z
350.8 — 206.3, 104.4, for phenazepam.
The internal standard (diazeparn—ds) was
monitored at the following transitions:
m/z 290.1 —198.3, 154.3. Tandem mass
spectrometry was performed under the
following conditions: curtain gas setting,
15; collision gas setting, medium; ion spray
Voltage setting, 5000 V; temperature set-
ting, 650 °C; ion source gas 1 setting, 50;
ion source gas 2 setting, 50. Tandem mass
spectrometer conditions are shown in Table
L. The analytical data were collected using
Analyst Software Version 1.5 supplied by
Applied Biosystems.

The retention times for phenazepam
and the internal standard (diazepam-
dg) were 3.49 and 3.54 min, respectively
(Figure 2).

Sample Preparation for Analysis
Calibrators and Controls
A solution of phenazepam was prepared
at a concentration of 1 pg/mL by the
dilution of 10 uL of stock solution with
acetonitrile to 10 mL in a volumetric
flask. A solution of the internal standard
(diazepam-d,) was prepared by diluting
100 uL of the stock solution (100 pg/mL)
to 10 mL with acetonitrile in a volumet-
ric flask. The choice of internal standard
was based on the fact that deuterated
analogs of phenazepam are not currently
available and that an isotopically labeled
analog of a benzodiazepine (which shares
structural similarities to phenazepam)
would not be observed in a case sample.
Calibrators were prepared by the addi-
tion of 0.5, 1.0, 10.0, 50, and 100 ng of
phenazepam into 1.0-mL samples of
drug-free whole blood. Then, 50 ng of
the internal standard was added to these
samples. Control samples were repared by
the addition of 4 ng of phenazepam to 1.0

Table I: Tandem mass spectrometry conditions

Phenazepam (1) 350.799 206.3 250 56 10.5 4 49
Phenazepam (2) 350.799 104.1 250 56 10.5 4 83
Diazepam-d; (1) 290.162 198.3 250 56 4.5 4 43
Diazepam-d (2) 290.162 154.3 250 56 4.5 4 39

Time = dwell time; DP = declustering potential; EP = exit potential; CXP = collision cell exit potential; and CE = collision energy
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Figure 2: Chromatogram of a blood extract containing phenazepam at LOQ (1.0 ng/
mL) showing total ion chromatogram (TIC) (upper), phenazepam (middle), and inter-

nal standard (lower).

mL samples of drug-free whole blood in
addition to 50 ng of the internal standard.
A negative control sample was prepared by
adding only the internal standard (50 ng)
to a sample of drug-free whole blood (1.0
mL). To each of the calibrators, control,
and test samples was added 5 mL of pH
6 buffer. These were then well mixed on
a vortex mixer (1 min) and centrifuged at
3000 rpm for 10 min before application
on individual SPE columns. All determi-
nations were performed in duplicate.

To assess the performance of the
procedure, calibration curves were con-
structed twice daily over five consecu-
tive days using the spiked controls; we
obtained intraday and interday values
from these data.

Solid-Phase Extraction
Solid-phase extraction columns were
conditioned by the sequential addition of
1 X 3 mL of methanol, 1 X 3 mL of DI
water, and 1 X 1 mL of 0.1 M phosphate
buffer (pH 6). Each liquid was allowed to
percolate through the sorbent using grav-
ity without allowing the sorbent to dry
out between steps.

Following the passage of the methanol,
DI water, and 0.1 M phosphate buffer (pH
6) through the SPE columns, each diluted

sample (that is, calibrator, control, and
case item) was loaded on to an individu-
ally marked SPE tube, and allowed to pass
through the sorbent using gravitational
flow. The columns were then washed with
1 X 3 mL of DI water, 1 X 3 mL of 1.0
M acetic acid, and 1 X 3 mL of methanol,
respectively. The SPE columns were then
dried by applying a vacuum to the SPE
manifold at 15 in. of mercury pressure
with the aid of an electric vacuum pump
connected to the vacuum manifold.

The analytes were eluted from the SPE
columns by the addition of 1 X 3 mL
of a 78:20:2 methylene chloride—isopro-
panol-ammonium hydroxide solution.
This solution was prepared daily by add-
ing 2 mL of concentrated ammonium
hydroxide solution to 20 mL of isopro-
panol and mixing well. Finally, 78 mL
of methylene chloride was added to this
solution and the resultant solution was
transferred to a clean screw-top glass
bottle for use. A screw-top bottle ensures
that the basicity of the solution remains
high by eliminating any loss of ammonia
from the bottle. The elution solvent was
allowed to flow through the SPE sorbent
with the aid of gravity and was collected
in separate glass tubes (75 mm X 125
mm). Glass tubes were chosen because

www.chromatographyonline.com

they are standard laboratory materials
within this toxicology laboratory.

The eluate from each SPE column
was evaporated to dryness using a gentle
stream of nitrogen at 35 °C, after which
the samples were dissolved in 100 pL
of a solution consisting of 95% mobile-
phase A and 5% mobile-phase B for LC—
MS-MS analysis.

Recovery Studies

To determine the recovery values across
the dynamic range of the analysis,
the results of the SPE extractions of
the whole blood extracts (as duplicate
analyses) were compared to the values
obtained from unextracted standards
at corresponding concentrations. The
unextracted standards were prepared by
evaporation of acetonitrile solutions con-
taining phenazepam (including 50 ng of
the internal standard). The dried residues
were dissolved in mobile phase (100 uL)
before analysis by LC-MS-MS.

Matrix Effects
Studies into the matrix effects were per-
formed according to procedures described
by Matuszewski and colleagues (11). In
this process, samples of drug-free whole
blood (1 mL) were spiked with phenaz-
epam before analysis using the SPE meth-
odology. A second set of drug-free whole
extracts was analyzed according to the
SPE method. Following elution from the
SPE columns, the extracts were spiked
with phenazepam. Both sets of samples
were evaporated to dryness under a gentle
stream of nitrogen at 35 °C, and the resi-
dues were dissolved in 100 pL of a solu-
tion consisting of 95% mobile-phase A
and 5% mobile-phase B, the samples were
combined for analysis by LC-MS-MS.
Phenazepam solutions (each with a
concentration of 50 ng/mL) were infused
into the tandem mass spectrometer using
the on-board syringe pump (controlled by
Analyst 1.5 software) via a 1-mL Hamil-
ton syringe (model 1001TLL, supplied by
Fisher Scientific) at a flow rate of 5 pL/
min. At the same time as the phenaz-
epam solution was flowing into the mass
spectrometer, a 10-pL aliquot of the SPE-
extracted whole blood matrix (drug-free
whole blood, free of phenazepam) was
injected using the autosampler syringe
on the Shimadzu liquid chromatograph
using Analyst 1.5 software. The liquid
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Figure 3: Chromatogram of an actual blood extract containing phenazepam show-

ing total ion chromatogram (TIC) (upper), phenazepam (middle), and internal

standard (lower).

chromatograph and mass spectrometer
were arranged so that samples from the
liquid chromatograph were mixed into
the flow of phenazepam via a three-port
T-section before the total flow entered
the mass spectrometer. Any suppression
effects on the phenazepam could be moni-
tored at the MRMSs for the noted drugs.

Selectivity

When analyzing samples of biofluids
such as blood via SPE and LC-MS-MS,
it is essential to ensure that the interfer-
ing effects of other drug compounds can
be eliminated. In this procedure, samples
of drug-free whole blood (I mL) were
spiked with 49 drugs at a concentration
of 100 ng/mL (bupropion, lidocaine,
methadone, amitriptyline, nortripty-
line, thioridazine, trazodone, mesorid-
azine, pethidine, diphenhydramine,
phenyltoloxamine, imipramine, desipra-
mine, benztropine, trimethoprim, diltia-
zem, haloperidol, strychnine, morphine,
codeine, 6-acetylmorphine, oxycodone,
oxymorphone, hydrocodone, noroxy-
codone, hydromorphone, diazepam,
nordiazepam, oxazepam, temazepam,

alprazolam, a-hydroxyalprazolam, loraz-
epam, triazolam, a-hydroxytriazolam,
flunitrazepam, 7-amino-flunitraze-
pam, chlordiazepoxide, midazolam,
a-hydroxymidazolam, flurazepam,
desalkyl-flurazepam, cocaine, ecgonine
methyl ester, ecgonine ethyl ester, benzoy-
lecgonine, cocacthylene, clonazepam, and
7-amino-clonazepam) and were extracted
according to the SPE method. The inter-
fering effect of these compounds was not

found to be significant.

Results and Discussion

Recovery

The recovery of phenazepam from drug-
free whole blood was 98% (+2%). This
result is an excellent indicator for the
efficiency of the extraction procedure
of phenazepam using whole blood as a
matrix. The procedure was performed
twice daily during a period of five days.

Imprecision of Analysis

The spiked control samples (4 ng/mL)
were determined to have concentrations of
3.9 ng/mL (£0.2 ng/mL). This value was
determined during a period of five days.

www.chromatographyonline.com

Intraday variation and interday varia-
tion for the analysis of phenazepam were
found to be less than 5% and less than
8%, respectively. Ion suppression studies
revealed that suppression of monitored
ions was less than 2%. This method was
found to be linear (»* > 0.995) through-
out the 1.0-100 ng/mL dynamic range
for phenazepam.

LOD and LOQ

The limit of detection (LOD) of a particular
method can be defined as the level at which
the signal-to-noise ratio for the particular
analyte is greater than or equal than 3:1.
The limit of quantification (LOQ) for the
method is the level at which the signal-to-
noise ratio for a particular analyte is greater
than or equal to 10:1. In this study, LOD
values were determined empirically by ana-
lyzing extracted samples of drug-free whole
blood fortified with phenazepam by LC—
MS-MS according to the SPE method.
This analysis was performed until the low-
est level at which each of the respective ana-
lytes just failed the signal-to-noise ratio of
3:1. This was observed to be 0.5 ng/mL. In
terms of LOQ, samples of drug-free blood
were spiked with phenazepam at concen-
trations below 10 ng/mL and extracted
according to the SPE procedure until the
analytes just failed a signal-to-noise ratio of
10:1; this value was found to be 1.0 ng/mL.

Solid-Phase Extraction

As noted earlier, phenazepam is a rela-
tively new compound of interest to foren-
sic toxicologists. The use of mixed-mode
SPE offers toxicologists in forensic labo-
ratories a very clean sample to analyze.
The sample is loaded onto the sorbent
as a diluted solution at pH 6, and it is
cleaned and concentrated on the SPE
column. The use of an ion-exchange
moiety allows coextracted materials to
rinse off the sorbent while the drug of
interest is retained in a clean condition.
In this situation, the drug can be eluted
using a mid-polarity solvent mixture that
is easily evaporated for further analysis.
This combination of hydrophobic and
ion-exchange chemistries is a power-
ful tool for producing clean samples for
chromatographic analyses.

Tandem Mass Spectrometry
This project was aimed at introduc-
ing new methodology to the forensic
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community involved in the analysis
of phenazepam in biological samples,
with selectivity and sensitivity in
mind. In other words, the ability to
detect, confirm, and quantify a com-
pound such as phenazepam in a com-
plex mixture at low levels is a highly
desired quality in a new procedure,
especially if it can lead to a fast turn-
around time and an increase in labora-
tory efficiency.

Conclusion

Phenazepam is quickly becoming a
drug of interest in forensic laborato-
ries in the United States, the United
Kingdom, and Europe (3,12), and
analysts will be asked to test for it on a
routine basis. With that in mind, this
new procedure using SPE and LC-
MS-MS will offer forensic toxicology
laboratories the ability to perform the
analysis of phenazepam in biologi-
cal fluids, such as blood, quickly and
efficiently. When this new method
was applied to a genuine case sample
taken from a driver operating a motor

vehicle, the whole blood sample was
found to contain 9 ng/mL of phenaz-
epam (Figure 3).
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Hinshaw. May, p. 402.

“Valves for Gas Chromatography: Funda-
mentals,” in GC Connections. John V.
Hinshaw. March, p. 246.

“Valves for Gas Chromatography, Part II:
Applications,” in GC Connections.
John V. Hinshaw. July, p. 576.

“Valves for Gas Chromatography, Part
III: Fluidic Switching Applications,”
in GC Connections. John V. Hinshaw.
November, p. 988.

GC-MS

“Hydrogen Carrier Gas and Vacuum Com-
pensation,” in GC Connections. John V.
Hinshaw. January, p. 36.

“Problem Solving in the Chemical Indus-
try,” in MS — The Practical Art.
Michael P. Balogh. February, p. 144.

Quantification of Total w-6 and -3 Fatty
Acids and ®-6/w-3 Ratio in Human
Serum Using GC-MS. Mary W. Muri-
uki, Gerard G. Dumancas, Neil Purdie,
and Lisa Reilly. January, p. 60.

“Testing the Critical Interface: Leachables
and Extractables,” in MS — The Practi-
cal Art. Michael P. Balogh. June, p. 492.

GRADIENT ELUTION

“Ghost Peak Investigation in a Reversed-
Phase Gradient LC System,” in LC
Troubleshooting. Silvia Sadikin, Dee
Dee Zhang, Roger Inloes, and Sanjeev
Redkar. May, p. 394.

“How Fast Can a Gradient Be Run?” in
LC Troubleshooting. John W. Dolan.
August, p. 652.

“Method Translation in Liquid Chroma-
tography,” in Column Watch. Ronald
E. Majors. June, p. 476.

HEADSPACE ANALYSIS

“Headspace Sampling,” in GC Connections.
John V. Hinshaw. October, p. 914.

“Testing the Critical Interface: Leachables
and Extractables,” in MS — The Practi-
cal Art. Michael P. Balogh. June, p. 492.
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HISTORY OF CHROMATOGRAPHY

“John Knox, a Pioneer of Both Gas and
Liquid Chromatography,” in The His-
tory of Chromatography. Gert Desmet.
November, p. 996.

“My Mentors, Colleagues, and Friends in Sep-
aration Science and Technology, Part1,” in
The History of Chromatography. Klaus K.
Unger. April, p. 326.

“My Mentors, Colleagues, and Friends in Sep-
aration Science and Technology, Part II,
in The History of Chromatography. Klaus
K. Unger. August, p. 658.

“Still a Young Technology, Chiral Chroma-
tography Makes Big Strides in Pharma,”
in The History of Chromatography. Pilar
Franco. February, p. 156.

HYDROPHILIC INTERACTION

CHROMATOGRAPHY

“Biotechnology Highlights from Israna-
lytica,” in Biotechnology Today. Ira S.
Krull, Anurag S. Rathore, and Simion
Kreimer. June, p. 502.

The Direct Analysis of Diquat and Paraquat
in Lake Water Samples by per Aqueous
Liquid Chromatography. Christina S.
Robb and Brian D. Eitzer. January, p. 54.

Electrostatic Repulsion-Hydrophilic Inter-
action Chromatography: Using One
Mode to Tune Retention from a Second
Mode. Andrew Alpert and Amos Heck-
endorf. July, p. 606.

“Highlights of HPLC 2011,” in Column
Watch. Ronald E. Majors. September,
p. 802.

HILIC-MS Sensitivity without Silica.
Luisa Pereira. March, p. 262.

INNOVATIONS IN HPLC COLUMN

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,”
in Innovations in HPLC. Michael
Swartz. May, p. 414.

“Nano LC: Principles, Evolution, and
State-of-the-Art of the Technique,” in
Innovations in HPLC. Laurent Rieux,
Evert-Jan Sneekes, and Remco Swart.
October, p. 926.

“Pulsed Electrochemical Detection: Wave-
form Evolution,” in Innovations in HPLC.
William R. LaCourse. July, p. 584.

ION CHROMATOGRAPHY

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,”
in Innovations in HPLC. Michael
Swartz. May, p. 414.

“Pulsed Electrochemical Detection: Wave-
form Evolution,” in Innovations in HPLC.

William R. LaCourse. July, p. 584.

ION-EXCHANGE

CHROMATOGRAPHY

“New Chromatography Columns and
Accessories at Pittcon 2011: Part I. Ron-
ald E. Majors. March, p. 218.

INTERVIEWS

A Case for Capillary Electrophoresis. Steve
Brown. September, p. 876.

An Emerging Leader: One Year Later.
Megan Evans. February, p. 196.

Generous Results with MISER Chromatogra-
phy. Alasdair Matheson. August, p. 683.

The Secrets of Electrospray Ionization: Why
Less is More. Laura Bush. March, p. 282.

LC TROUBLESHOOTING COLUMN

“The Case of the Too Big Little Peak,” in
LC Troubleshooting. John W. Dolan.
June, p. 486.

“Column Triage,” in LC Troubleshooting.
John W. Dolan. October, p. 908.

“Ghost Peak Investigation in a Reversed-
Phase Gradient LC System,” in LC
Troubleshooting. Silvia Sadikin, Dee
Dee Zhang, Roger Inloes, and Sanjeev
Redkar. May, p. 394.

“How Fast Can a Gradient Be Run?” in
LC Troubleshooting. John W. Dolan.
August, p. 652.

“Locating Precision Problems,” in LC Trou-
bleshooting. John W. Dolan. Novem-
ber, p. 982.

“A Picture Is Worth a Thousand Words,” in
LC Troubleshooting. Kasper Pedersen and
John W. Dolan. February, p. 136.

“Selectivity in Reversed-Phase LC Separa-
tions, Part II: Solvent-Strength Selectiv-
ity,” in LC Troubleshooting. John W.
Dolan. January, p. 28.

“Selectivity in Reversed-Phase LC Separa-
tions, Part III: Column-Type Selectiv-
ity,” in LC Troubleshooting. John W.
Dolan. March, p. 236.

“Selectivity in Reversed-Phase LC Separa-
tions, Part IV: Pressure Selectivity,” in
LC Troubleshooting. John W. Dolan.
April, p. 318.

“Troubleshooting Basics, Part I: Where to
Start?” in LC Troubleshooting. John W.
Dolan. July, p. 570.

“Troubleshooting Basics, Part II: Pressure
Problems,” in LC Troubleshooting. John
W. Dolan. September, p. 818.
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“Troubleshooting Basics, Part III: Reten-
tion Problems,” in LC Troubleshooting.
John W. Dolan. December, p. 1046.

LC-MsS

Aggregated Singletons for Automated Puri-
fication Workflow. Bhagyashree A.
Khunte and Laurence Philippe. Febru-
ary, p. 170.

Analysis of Phenazepam in Whole Blood
Using Solid-Phase Extraction and LC—
Tandem Mass Spectrometry. Albert A.
Elian, Jeffery Hackett, and Michael J.
Telepchak. December, p. 1064.

Analysis of Psilocybin and Psilocin in Urine
Using SPE and LC-Tandem Mass Spec-
trometry. Albert A. Elian, Jeffery Hack-
ett, and Michael J. Telepchak. Septem-
ber, p. 854.

“Biotechnology Highlights from Israna-
lytica,” in Biotechnology Today. Ira S.
Krull, Anurag S. Rathore, and Simion
Kreimer. June, p. 502.

“Current Applications of UHPLC in Bio-
technology, Part II: Proteins and Gly-
cans,” In Biotechnology Today. I.S.
Krull, A. Rathore, and T. Wheat.
December, p. 1052.

Determination of Clenbuterol-Like Beta-
Agonist Residues in Hair. Wan-hua
Yang, Wen-ting Ling, Qin Feng, and
Gui-liang Chen. July, p. 600.

The Direct Analysis of Diquat and Paraquat
in Lake Water Samples by per Aqueous
Liquid Chromatography. Christina S.
Robb and Brian D. Eitzer. January, p. 54.

HILIC-MS Sensitivity without Silica.
Luisa Pereira. March, p. 262.

Laser Diode Thermal Desorption Tandem
Mass Spectrometry for Simultaneous
Quantitation of Metformin and Sita-
gliptin in Mouse and Human Dried
Blood Spots. John G. Swales, Richard
T. Gallagher, Mark Denn, Raimund M.
Peter, and Nick Duczak. October, p. 936.

“Nano LC: Principles, Evolution, and
State-of-the-Art of the Technique,” in
Innovations in HPLC. Laurent Rieux,
Evert-Jan Sneekes, and Remco Swart.
October, p. 926.

On-Line Whole Blood Analysis Using
Microextraction by Packed Sorbent and
LC-MS-MS. Mohamed Abdel-Rehim.
July, p. 612.

The Secrets of Electrospray lonization: Why
Less is More. Laura Bush. March, p. 282.

Toward a Universal Detector for Small
Molecule Applications: Direct-EI in
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LC-MS. Pierangela Palma, Giorgio
Famiglini, Helga Trufelli, and Achille
Capiello. January, p. 68.

Trace Metabolic Profiling and Pathway Anal-
ysis of Clomazone Using LC-MS-MS and
High-Resolution MS. Wei Zou, Hagai
Yasuor, Albert J. Fischer, and Vladimir V.
Tolstikov. September, p. 860.

MEETING REPORTS

“Biotechnology Highlights from Israna-
lytica,” in Biotechnology Today. Ira S.
Krull, Anurag S. Rathore, and Simion
Kreimer. June, p. 502.

“Highlights of HPLC 2011,” in Column Watch.
Ronald E. Majors. September, p. 802.

The 2011 LCGC Pittcon Awards. Laura Bush.
March, p. 258.

METHOD DEVELOPMENT

AND OPTIMIZATION

“The Case of the Too Big Little Peak,” in
LC Troubleshooting. John W. Dolan.
June, p. 486.

“Ghost Peak Investigation in a Reversed-
Phase Gradient LC System,” in LC
Troubleshooting. Silvia Sadikin, Dee
Dee Zhang, Roger Inloes, and Sanjeev
Redkar. May, p. 394.

“How Fast Can a Gradient Be Run?” in
LC Troubleshooting. John W. Dolan.
August, p. 652.

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,”
in Innovations in HPLC. Michael
Swartz. May, p. 414.

“Locating Precision Problems,” in LC Trou-
bleshooting. John W. Dolan. Novem-
ber, p. 982.

“Method Translation in Gas Chromatog-
raphy,” in Column Watch. Ronald E.
Majors and Ken Lynam. July, p. 560.

“Method Translation in Liquid Chroma-
tography,” in Column Watch. Ronald
E. Majors. June, p. 476.

“A Picture Is Worth a Thousand Words,” in
LC Troubleshooting. Kasper Pedersen and
John W. Dolan. February, p. 136.

“Selectivity in Reversed-Phase LC Separa-
tions, Part II: Solvent-Strength Selectiv-
ity,” in LC Troubleshooting. John W.
Dolan. January, p. 28.

“Selectivity in Reversed-Phase LC Separa-
tions, Part III: Column-Type Selectiv-
ity,” in LC Troubleshooting. John W.
Dolan. March, p. 236.

“Selectivity in Reversed-Phase LC Separa-
tions, Part IV: Pressure Selectivity,” in

LC Troubleshooting. John W. Dolan.
April, p. 318.

“Troubleshooting Basics, Part III: Reten-
tion Problems,” in LC Troubleshooting.
John W. Dolan. December, p. 1046.

METHOD VALIDATION

“Analytical Method Validation: Back to
Basics, Part II,” in Validation View-
point. Michael Swartz and Ira Krull.
January, p. 44.

MOBILE PHASES, SOLVENTS,

CARRIER GASES

“The Greening of the Chromatography
Laboratory,” in Sample Prep Perspec-
tives. Ronald E. Majors and Douglas
Raynie. February, p. 118.

“Hydrogen Carrier Gas and Vacuum Com-
pensation,” in GC Connections. John V.
Hinshaw. January, p. 36.

A Rapid and Space-Saving Method for Deter-
mining Melamine in Milk Under Organic
Solvent-Free Conditions. Naoto Furusawa.
February, p. 162.

“Selectivity in Reversed-Phase LC Separa-
tions, Part II: Solvent-Strength Selectiv-
ity,” in LC Troubleshooting. John W.
Dolan. January, p. 28.

MS — THE PRACTICAL ART

COLUMN

“Problem Solving in the Chemical Indus-
try,” in MS — The Practical Art.
Michael P. Balogh. February, p. 144.

“Testing the Critical Interface: Leachables
and Extractables,” in MS — The Practi-
cal Art. Michael P. Balogh. June, p. 492.

“Visualizing the Chemical Composition of
Complex Samples,” in MS — The Prac-
tical Art. Michael P. Balogh and David
Stranz. September, p. 826.

MULTIDIMENSIONAL

CHROMATOGRAPHY

“Highlights of HPLC 2011,” in Column Watch.
Ronald E. Majors. September, p. 802.

“Valves for Gas Chromatography, Part
III: Fluidic Switching Applications,”
in GC Connections. John V. Hinshaw.
November, p. 988.

PHARMACEUTICALS

AND DRUG MONITORING

Aggregated Singletons for Automated Puri-
fication Workflow. Bhagyashree A.
Khunte and Laurence Philippe. February,
p. 170.
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Analysis of Phenazepam in Whole Blood
Using Solid-Phase Extraction and LC—
Tandem Mass Spectrometry. Albert A.
Elian, Jeffery Hackett, and Michael J.
Telepchak. December, p. 1064.

“Analytical Method Validation: Back to
Basics, Part II,” in Validation View-
point. Michael Swartz and Ira Krull.
January, p. 44.

“Current Applications of UHPLC in Bio-
technology, Part II: Proteins and Gly-
cans,” In Biotechnology Today. I.S.
Krull, A. Rathore, and T. Wheat.
December, p. 1052.

Determination of Clenbuterol-Like Beta-
Agonist Residues in Hair. Wan-hua
Yang, Wen-ting Ling, Qin Feng, and
Gui-liang Chen. July, p. 600.

A Generic Workflow for Achiral SFC Purifi-
cation of Complex Pharmaceutical Mix-
tures. Vivi Lazarescu, Mark J. Mulvihill,
and Lifu Ma. May, p. 438.

Generous Results with MISER Chromatogra-
phy. Alasdair Matheson. August, p. 683.

“High-Throughput Tools and Approaches for
Development of Process Chromatography
Steps,” in Biotechnology Today. Anurag
S. Rathore, Rahul Bhambure, and Ira S.
Krull. March, p. 252.

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,”
in Innovations in HPLC. Michael
Swartz. May, p. 414.

Laser Diode Thermal Desorption Tandem
Mass Spectrometry for Simultaneous
Quantitation of Metformin and Sita-
gliptin in Mouse and Human Dried
Blood Spots. John G. Swales, Richard
T. Gallagher, Mark Denn, Raimund M.
Peter, and Nick Duczak. October, p. 936.

“New Directions in Whole Blood Analysis:
Dried Blood Spot Analysis and Beyond,”
in Sample Prep Perspectives. Ronald E.
Majors. January, p. 14.

On-Line Whole Blood Analysis Using
Microextraction by Packed Sorbent and
LC-MS-MS. Mohamed Abdel-Rehim.
July, p. 612.

“Pulsed Electrochemical Detection: Wave-
form Evolution,” in Innovations in HPLC.
William R. LaCourse. July, p. 584.

A Simple Instrumental Approach for “Supercrit-
ical” Fluid Chromatography in Drug Dis-
covery and Its Consequences for Coupling
with Mass Spectrometric and Light Scatter-
ing Detection. Alberto Pereira, Frank David,
Gerd Vanhoenacker, Claudio Brunelli, and
Pat Sandra. November, p. 1006.
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“Still a Young Technology, Chiral Chroma-
tography Makes Big Strides in Pharma,”
in The History of Chromatography. Pilar
Franco. February, p. 156.

“Testing the Critical Interface: Leachables
and Extractables,” in MS — The Practi-
cal Art. Michael P. Balogh. June, p. 492.

Trace Metabolic Profiling and Pathway Anal-
ysis of Clomazone Using LC-MS-MS and
High-Resolution MS. Wei Zou, Hagai
Yasuor, Albert J. Fischer, and Vladimir V.
Tolstikov. September, p. 860.

PREPARATIVE AND PROCESS-

SCALE CHROMATOGRAPHY

“High-Throughput Tools and Approaches
for Development of Process Chromatog-
raphy Steps,” in Biotechnology Today.
Anurag S. Rathore, Rahul Bhambure,
and Ira S. Krull. March, p. 252.

PROTEINS, PEPTIDES, ENZYMES

“Biotechnology Highlights from Israna-
lytica,” in Biotechnology Today. Ira S.
Krull, Anurag S. Rathore, and Simion
Kreimer. June, p. 502.

“Current Applications of UHPLC in Bio-
technology, Part I: Peptide Mapping and
Amino Acid Analysis,” in Biotechnol-
ogy Today. L.S. Krull, A. Rathore, and
Thomas E. Wheat. September, p. 838.

“Current Applications of UHPLC in Bio-
technology, Part II: Proteins and Gly-
cans,” In Biotechnology Today. I.S.
Krull, A. Rathore, and T. Wheat.
December, p. 1052.

“High-Throughput Tools and Approaches for
Development of Process Chromatography
Steps,” in Biotechnology Today. Anurag
S. Rathore, Rahul Bhambure, and Ira S.
Krull. March, p. 252.

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,”
in Innovations in HPLC. Michael
Swartz. May, p. 414.

REGULATORY ISSUES

“Analytical Method Validation: Back to
Basics, Part II,” in Validation View-
point. Michael Swartz and Ira Krull.
January, p. 44.

REVERSED-PHASE

CHROMATOGRAPHY

Aggregated Singletons for Automated Puri-
fication Workflow. Bhagyashree A.
Khunte and Laurence Philippe. February,
p. 170.

“Current Applications of UHPLC in Bio-
technology, Part II: Proteins and Gly-
cans,” In Biotechnology Today. I.S.
Krull, A. Rathore, and T. Wheat.
December, p. 1052.

Determination of Phenylurea Herbicides in
Tap Water and Soft Drink Samples by
HPLC-UYV and Solid-Phase Extraction.
Manpreet Kaur, Ashok Kumar Malik,
and Baldev Singh. April, p. 338.

“Ghost Peak Investigation in a Reversed-
Phase Gradient LC System,” in LC
Troubleshooting. Silvia Sadikin, Dee
Dee Zhang, Roger Inloes, and Sanjeev
Redkar. May, p. 394.

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,”
in Innovations in HPLC. Michael
Swartz. May, p. 414.

“New Chromatography Columns and
Accessories at Pittcon 2011: Part I. Ron-
ald E. Majors. March, p. 218.

A Rapid and Space-Saving Method for Deter-
mining Melamine in Milk Under Organic
Solvent-Free Conditions. Naoto Furusawa.
February, p. 162.

“Selectivity in Reversed-Phase LC Separa-
tions, Part II: Solvent-Strength Selectiv-
ity,” in LC Troubleshooting. John W.
Dolan. January, p. 28.

“Selectivity in Reversed-Phase LC Separa-
tions, Part III: Column-Type Selectiv-
ity,” in LC Troubleshooting. John W.
Dolan. March, p. 236.

“Selectivity in Reversed-Phase LC Separations,
Part IV: Pressure Selectivity,” in LC Trou-
bleshooting. John W. Dolan. April, p. 318.

Trace Metabolic Profiling and Pathway Anal-
ysis of Clomazone Using LC-MS-MS and
High-Resolution MS. Wei Zou, Hagai
Yasuor, Albert J. Fischer, and Vladimir V.
Tolstikov. September, p. 860.

SAMPLE PREP

PERSPECTIVES COLUMN

“The Greening of the Chromatography
Laboratory,” in Sample Prep Perspec-
tives. Ronald E. Majors and Douglas
Raynie. February, p. 118.

“Hollow Fiber Liquid-Phase Microextrac-
tion in the Three-Phase Mode — Prac-
tical Considerations,” in Sample Prep
Perspectives. Astrid Gjelstad, Hami-
dreza Taherkhani, Knut Einar Ras-
mussen, and Stig Pedersen-Bjergaard.
December, p. 1038.

“New Directions in Whole Blood Analy-
sis: Dried Blood Spot Analysis and
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Beyond,” in Sample Prep Perspectives.
Ronald E. Majors. January, p. 14.

“Prevention Is Better than Cure: An Alter-
native Approach in the Sample Prepa-
ration of Complex Samples,” in Sample
Prep Perspectives. Precious Sibiya,
Ewa Cukrowska, and Luke Chimuka.
November, p. 970.

SAMPLE PREPARATION

Aggregated Singletons for Automated Puri-
fication Workflow. Bhagyashree A.
Khunte and Laurence Philippe. Febru-
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Analysis of Phenazepam in Whole Blood
Using Solid-Phase Extraction and LC—
Tandem Mass Spectrometry. Albert A.
Elian, Jeffery Hackett, and Michael J.
Telepchak. December, p. 1064.
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Laboratory,” in Sample Prep Perspec-
tives. Ronald E. Majors and Douglas
Raynie. February, p. 118.

“Hollow Fiber Liquid-Phase Microextraction
in the Three-Phase Mode — Practical Con-
siderations,” in Sample Prep Perspectives.
Astrid Gjelstad, Hamidreza Taherkhani,
Knut Einar Rasmussen, and Stig Pedersen-
Bjergaard. December, p. 1038.

Improving the Efficiency of Fatty Acid
Methyl Ester Preparation Using Auto-
mated Sample Preparation Techniques.
Rebecca A. Veeneman. July, p. 594.

Laser Diode Thermal Desorption Tandem
Mass Spectrometry for Simultaneous
Quantitation of Metformin and Sita-
gliptin in Mouse and Human Dried
Blood Spots. John G. Swales, Richard
T. Gallagher, Mark Denn, Raimund M.
Peter, and Nick Duczak. October, p. 936.

“New Chromatography Columns and
Accessories at Pittcon 2011: Part II,” in
in Column Watch. Ronald E. Majors.
April, p. 300.

“New Directions in Whole Blood Analysis:
Dried Blood Spot Analysis and Beyond,”
in Sample Prep Perspectives. Ronald E.
Majors. January, p. 14.

On-Line Whole Blood Analysis Using
Microextraction by Packed Sorbent and
LC-MS-MS. Mohamed Abdel-Rehim.
July, p. 612.

“Prevention Is Better than Cure: An Alter-
native Approach in the Sample Prepa-
ration of Complex Samples,” in Sample
Prep Perspectives. Precious Sibiya,
Ewa Cukrowska, and Luke Chimuka.
November, p. 970.
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A Rapid and Space-Saving Method for Deter-
mining Melamine in Milk Under Organic
Solvent-Free Conditions. Naoto Furusawa.
February, p. 162.

SIZE-EXCLUSION

CHROMATOGRAPHY

“Current Applications of UHPLC in Bio-
technology, Part II: Proteins and Gly-
cans,” In Biotechnology Today. I.S.
Krull, A. Rathore, and T. Wheat.
December, p. 1052.

The Effect of SEC Column Arrangement of
Different Pore Sizes on Resolution and
Molecular Weight Measurements. Bruce
Kempf, Roy Eksteen, and Howard G.
Barth. August, p. 668.

“New Chromatography Columns and
Accessories at Pittcon 2011: Part I. Ron-
ald E. Majors. March, p. 218.

SOLID-PHASE EXTRACTION

An Emerging Leader: One Year Later.
Megan Evans. February, p. 196.

Analysis of Phenazepam in Whole Blood
Using Solid-Phase Extraction and LC—
Tandem Mass Spectrometry. Albert A.
Elian, Jeffery Hackett, and Michael J.
Telepchak. December, p. 1064.

Analysis of Psilocybin and Psilocin in Urine
Using SPE and LC-Tandem Mass Spec-
trometry. Albert A. Elian, Jeffery Hack-
ett, and Michael J. Telepchak. Septem-
ber, p. 854.

Determination of a-Amanitin in Human
Serum by Solid-Phase Extraction Coupled
with HPLC-UV. Zhi Zhou, Min Cao,
Liping Zhou, Xiongjun Zuo, and Youwen
Tang. August, p. 672.

Determination of Phenylurea Herbicides in
Tap Water and Soft Drink Samples by
HPLC-UYV and Solid-Phase Extraction.
Manpreet Kaur, Ashok Kumar Malik,
and Baldev Singh. April, p. 338.

On-Line Whole Blood Analysis Using
Microextraction by Packed Sorbent and
LC-MS-MS. Mohamed Abdel-Rehim.
July, p. 612.

Why All C18 Phases Are Not Equal. Craig
A. Perman and Michael Telepchak.
June, p. 516.

STANDARDS

Establishing USP Rebaudioside A and Ste-
vioside Reference Standards for the Food
Chemicals Codex. Yi Dang, Jeffrey Moore,
Gloria Huang, Markus Lipp, Barbara
Jones, and James C. Griffiths. May, p. 430.

STATIONARY PHASES FOR LC

“Highlights of HPLC 2011,” in Column
Watch. Ronald E. Majors. September,
p. 802.

HILIC-MS Sensitivity without Silica.
Luisa Pereira. March, p. 262.

Why All C18 Phases Are Not Equal. Craig
A. Perman and Michael Telepchak.
June, p. 516.

SUPERCRITICAL FLUID

CHROMATOGRAPHY

A Generic Workflow for Achiral SFC Purifi-
cation of Complex Pharmaceutical Mix-
tures. Vivi Lazarescu, Mark ]. Mulvihill,
and Lifu Ma. May, p. 438.

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,”
in Innovations in HPLC. Michael
Swartz. May, p. 414.

“New Chromatography Columns and
Accessories at Pittcon 2011: Part II,” in
in Column Watch. Ronald E. Majors.
April, p. 300.

A Simple Instrumental Approach for
“Supercritical” Fluid Chromatography
in Drug Discovery and Its Consequences
for Coupling with Mass Spectrometric
and Light Scattering Detection. Alberto
Percira, Frank David, Gerd Vanhoe-
nacker, Claudio Brunelli, and Pat San-
dra. November, p. 1006.

“A Systematic Study of Achiral Stationary
Phases Using Analytes Selected with a
Molecular Diversity Model,” in Column
Watch. Ray McClain and Matt Przyby-
ciel. October, p. 894.

SUPPLEMENT:

CURRENT TRENDS IN

MASS SPECTROMETRY

Advanced Structural Mass Spectrometry for
Systems Biology: Pulling the Needles from
Haystacks. Jeffrey R. Enders, Cody R.
Goodwin, Christina C. Marasco, Kevin
T. Seale, John P. Wikswo, and John A.
McLean. July, p. 18.

Analytical Strategies in the Development
of Generic Drug Products: The Role of
Chromatography and Mass Spectrom-
etry. Arindam Roy and Srinivasa Gorla.
October, p. 29.

Comparison of Extracts from Dry and Alco-
hol-Steamed Root of Polygonatum kingia-
num (Huang Jing) by Sub-2-um-LC-
TOEF-MS. Kate Yu, Baiping Ma, HeShui
Yu, Liping Kang, Jie Zhang, Yue Gao,
and Alan Millar. March, p. 30.

www.chromatographyonline.com

Comprehensive Analysis of Persistent Organic
Pollutants in Complex Matrices Using GC
with High-Performance TOF-MS. David
E. Alonso, Joe Binkley, and Kevin Siek.
July, p. 48.

Creating a High-Throughput LC-MS-MS
System Using Common Components.
Lance Heinle and Gary Jenkins. Octo-
ber, p. 16.

Determining High-Molecular-Weight Phthal-
ates in Sediments Using GC-APCI-TOF-
MS. Frank David, Pat Sandra, and Peter
Hancock. May, p. 42.

Food Metabolomics: Fact or Fiction? Leon
Coulier, Albert Tas, and Uwe Thissen.
May, p. 34.

High-Definition Screening for Boar Taint in
Fatback Samples Using GC-MS. Torsten
Haas, Peter Boeker, Alun Cole, and Ger-
hard Horner. July, p. 38.

High-Throughput Quantitative Analysis
of Vitamin D Using a Multiple Parallel
LC-MS System Combined with Inte-
grated On-Line SPE. Adrian M. Taylor
and Michael J.Y. Jarvis. May, p. 12.

25-Hydroxyvitamin D,/D; Analysis in
Human Plasma Using LC-MS. Phil
Koerner and Michael McGinley. March,
p- 8.

Imaging Mass Spectrometry: Current Per-
formance and Upcoming Challenges.
Pierre Chaurand. July, p. 30.

Mass Spectrometry Advances Fossilomics.
John M. Asara. March, p. 18.

Mass Spectrometry in Analytical Lipido-
mics. Luis Cuadros-Rodriguez, Alegria
Carrasco-Pancorbo, and Natalia Navas
Iglesias. July, p. 8.

Mass Spectrometry of Organic Molecules
and Laser-Induced Acoustic Desorp-
tion: Applications, Mechanisms, and
Perspectives. Alexander Zinovev and
Igor Veryovkin. July, p. 24.

Matrix-Assisted Laser Desorption-lonization
Imaging Mass Spectrometry for Direct
Tissue Analysis. J.D. Pallua, G. Schae-
fer, L.K. Bittner, C. Pezzei, V. Huck-
Pezzei, S.A. Schoenbichler, S. Meding,
S. Rauser, A. Walch, M. Handler, M.
Netzer, M. Osl, M. Seger, B. Pfeifer, C.
Baumgartner, H. Lindner, L. Kremser,
B. Sarg, H. Klocker, G. Bartsch, G.K.
Bonn, and CW. Huck. October, p. 21.

Metabolomics Workflows: Combining Untar-
geted Discovery-Based and Targeted Con-
firmation Approaches for Mining Metabo-
lomics Data. Theodore Sana, Steve Fischer,

and Shane E. Tichy. March, p. 12.
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A New Path to High-Resolution HPLC-
TOF-MS — Survey, Targeted, and Trace
Analysis Applications of TOF-MS in the
Analysis of Complex Biochemical Matri-
ces. Jeffrey S. Patrick, Kevin Siek, Joe
Binkley, Viatcheslav Artaev, and Michael
Mason. May, p. 18.

On- and Off-Line Coupling of Separation
Techniques to Ambient Ionization Mass
Spectrometry. Li Li and Kevin Schug.
October, p. 8.

Probing Aqueous Surfaces by TOF-SIMS.
Xiao-Ying Yu, Li Yang, Zihua Zhu,
James P. Cowin, and Martin J. ledema.
October, p. 34.

Responding to Data Analysis and Evaluation
Challenges in Mass Spectrometry—Based
Methods for High-Throughput Pro-
teomics. Laurence M. Brill. March, p. 36.

Review of the 59th Annual ASMS Confer-
ence. Megan Evans. July, p. 54.

A Sensitive, Specific, Accurate, and Fast
LC-MS-MS Method for Measurement
of Ethyl Glucuronide and Ethyl Sulfate
in Human Urine. Shuguang Li, Jeff
Layne, Sky Countryman, and Michael
McGinley. July, p. 42.

Single Multipoint Calibration Curve for
Discovery Bioanalysis. Benjamin Begley
and Michael Koleto. May, p. 8.

Time-Resolved SRM Analysis and Highly
Multiplexed LC-MS-MS for Quantifying
Tryptically Digested Proteins. Richard G.
Kay, James W. Howard, and Steve Pleas-
ance. March, p. 24.

Why Use Signal-To-Noise As a Measure of
MS Performance When It Is Often Mean-
ingless? Greg Wells, Harry Prest, and
Charles William Russ IV. May, p. 28.

SUPPLEMENT: DEFENSE AND

HOMELAND SECURITY

Advances in Spectroscopy for Detection
and Identification of Potential Bioterror
Agents. Eric W. Fisher. April, p. 29.

Detecting Explosives by Portable Raman
Analyzers: A Comparison of 785-, 976-,
1064-, and 1550-nm (Retina-Safe) Laser
Excitation. Michael Donahue, Hermes
Huang, Carl Brouillette, Wayne Smith,
and Stuart Farquharson. April, p. 24.

Detection of Chemicals with Standoff Raman
Spectroscopy. Anupam K. Misra, Shiv K.
Sharma, Tayro E. Acosta, and David E.
Bates. April, p. 18.

Explosives Sensing Using Multiple Optical
Techniques in a Standoff Regime with a
Common Platform. Alan R. Ford, Rob-

ert D. Waterbury, Darius M. Vunck,
Jeremy B. Rose, Thomas B. Blank,
Ken R. Pohl, Troy A. McVay, Edwin L.
Dottery, Mikella E. Hankus, Ellen L.
Holthoff, Paul M. Pellegrino, Steve D.
Christesen, and Augustus W. Fountain
III. April, p. 6.

Mid-Infrared Vibrational Spectroscopy
Standoff Detection of Highly Ener-
getic Materials: New Developments.
Samuel P. Herndndez-Rivera, John R.
Castro-Suarez, Leonardo C. Pacheco-
Londofo, Oliva M. Primera-Pedrozo,
Nicolas Rey-Villamizar, Miguel Vélez-
Reyes, and Max Diem. April, Digital
Edition.

Monitoring of Biological Matrices by GC—
MS-MS for Chemical Warfare Nerve
Agent Detection. Jeffrey M. McGuire,
Jr., Edward M. Jakubowski, and Sandra
Thomson. April, p. 12.

SUPPLEMENT: RECENT

DEVELOPMENTS IN HPLC/UHPLC

Automated Peak Tracking for Comprehen-
sive Impurity Profiling with Chemomet-
ric Mass Spectrometric Data Processing.
Gang Xue and Lin Zhang. April, p. 40.

Fast Analysis of Third-Generation Cepha-
losporins in Human Plasma by SPE and
HPLC Methods. Imran Ali, Zeid A.
Al-Othman, Hassan Y. Aboul-Enein,
Kishwar Saleem, and Igbal Hussain.
April, p. 18.

Fast LC for Conventional HPLC Systems.
Joseph Helble. April, p. 34.

Improving the Universal Response of Nebu-
lization-Based UHPLC Detection. Phil-
lip DeLand, John Waraska, Christopher
Crafts, Ian Acworth, Frank Steiner, and
Tobias Fehrenbach. April, p. 45.

An LC-IR Hyphenated Approach to Char-
acterize Polymeric Excipients in Phar-
maceutical Formulations. William W.
Carson, Ming Zhou, and Tom Kearney.
April, p. 50.

Recent Developments in HPLC/UHPLC.
Michael Swartz. April, p. 8.

A Strategic Approach to the Quantification
of Therapeutic Peptides in Biological
Fluids. Erin E. Chambers, Kenneth J.
Fountain, and Diane M. Diehl. April,
p. 24.

Validation of LC-MS-MS Methods for the
Determination of Ibuprofen in Miniature
Swine Plasma and Synovial Fluid. Law-
rence Andrade, Adam Grenier, Amber
Awad, and Teresa Pekol. April, p. 10.

DECEMBER 2011 LCGC NORTH AMERICA VOLUME 29 NUMBER 12 1083

THIN-LAYER CHROMATOGRAPHY

Development and Validation of an HPTLC
Method for Determination of Aflatoxin
B,. Hegang Gao, Li Chen, Guoshao
Pan, and Chunyu Tu. April, p. 348.

“Self-Assembled Nanomaterials for Enhanced
Chemical Separations,” in Column
Watch. Stephanie A. Archer-Hartmann
and Lisa A. Holland. May, p. 384.

UHPLC

“Current Applications of UHPLC in Bio-
technology, Part I: Peptide Mapping and
Amino Acid Analysis,” in Biotechnol-
ogy Today. L.S. Krull, A. Rathore, and
Thomas E. Wheat. September, p. 838.

“Current Applications of UHPLC in Bio-
technology, Part II: Proteins and Gly-
cans,” In Biotechnology Today. I.S.
Krull, A. Rathore, and T. Wheat.
December, p. 1052.

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,”
in Innovations in HPLC. Michael
Swartz. May, p. 414.

“Method Translation in Liquid Chroma-
tography,” in Column Watch. Ronald
E. Majors. June, p. 476.

“Troubleshooting Basics, Part II: Pressure
Problems,” in LC Troubleshooting. John
W. Dolan. September, p. 818.

VALIDATION

VIEWPOINT COLUMN

“Analytical Method Validation: Back to
Basics, Part II,” in Validation View-
point. Michael Swartz and Ira Krull.
January, p. 44.

VALVES

“Valves for Gas Chromatography: Funda-
mentals,” in GC Connections. John V.
Hinshaw. March, p. 246.

“Valves for Gas Chromatography, Part II:
Applications,” in GC Connections.
John V. Hinshaw. July, p. 576.

“Valves for Gas Chromatography, Part
III: Fluidic Switching Applications,”
in GC Connections. John V. Hinshaw.
November, p. 988.

For more information on this topic,

please visit
www.chromatographyonline.com
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PRODUCT RESOURCES

HPLC columns
The XSelect HSS Cyano
and HSS PFP columns
from Waters are designed
to offer scientists an alter-
native to traditional C18
column chemistries. The
columns reportedly offer .
more control over the xSELEc(.:,T
resolving power of HPLC

separations, reducing time

and method development costs. Waters Corporation,
Milford, MA. www.waters.com

Centrifuge tubes
UCT's Enviro-Clean PAH-
certified centrifuge tubes are
designed for performing PAH
analysis using QUEChERS,
AOAC, or other methods that
require the use of 50-mL
centrifuge tubes. The model
ECPAHFR50CT polypropylene
tubes are supplied with plug-
seal caps. UCT, Inc.,

Bristol, PA.
www.unitedchem.com

Automated headspace analyzer
The Versa automated headspace
analyzer from Teledyne Tekmar is
designed for traditional static head-
space analysis. The analyzer includes
a 20-position autosampler, built-in
pressure control, an automated leak
check and benchmark function, a
method optimization mode, and
sample heating to 200 °C.
Teledyne Tekmar, Mason, OH. |
www.teledynetekmar.com g i i

Mass spectrometer
Shimadzu's LCMS-8030 triple-quadru-
pole mass spectrometer is designed to
complement UHPLC systems, offering
power and speed in the detection

of target analytes. According to the
company, the system features multiple
reaction monitoring (MRM) transitions
that enable data acquisition of as many
as 500 channels/s, 15-ms polarity
switching, and mass spectrum measurement speeds of 15,000 u/s. The
instrument reportedly accelerates ions out of the collision cell by forming
a pseudo-potential surface, producing high-efficiency collision-induced
dissociation (CID) and high-speed ion transport. Shimadzu Scientific
Instruments, Inc., Columbia, MD; www.ssi.shimadzu.com

HPLC-UHPLC columns
Aeris core—shell HPLC—
UHPLC columns from Phe-
nomenex are designed for the
analysis of proteins and pep-
tides. The Widepore columns
(3.6-um pores) reportedly are
optimized for the separation
of intact proteins and poly-
peptides and are available in
three selectivities: XB-C18,
XB-C8, and C4. The Peptide columns (3.6- and 1.7-um pores) are
available in the XB-C18 selectivity and are intended for the separa-
tion of low-molecular-weight peptides and for peptide mapping.
Phenomenex, Inc., Torrance, CA. www.phenomenex.com

SPE cartridge columns and plates
SPE cartridge columns and 96-well
plates from Thermo Fisher Scientific
are designed for high-throughput
sample preparation for drugs-of-abuse
testing. The Servo cartridge columns
and plates are intended for total drug
screening and specific testing for THC,
opiates, amphetamines, PCP, and
cocaine. The Servo+ cartridge col-
umns and plates are designed to pro-
vide greater selectivity, higher loading
capacity, and increased robustness.
Thermo Fisher Scientific, Waltham,
MA. www.thermoscientific.com/servo
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Syringe selection guide
Supelco's 44-page syringe selection
guide is designed to help users choose

the correct syringe for a given appli- ot e
cation. The guide lists autosampler,
manual, and gastight syringes, including
color-coded and digital syringes. The
guide also includes a syringe selection
table. Supelco/Sigma-Aldrich,

St. Louis, MO.
www.sigmaaldrich.com/syringes

Syringe Selection Guide @menco

Reversed-phase UHPLC column
Agilent's Zorbax RRHD
300SB-C18 1.8-um col-
umn for UHPLC separa-
tions is a rapid resolution,
high definition silica
reversed-phase column.
According to the com-
pany, the column is suited
for higher-order reversed-phase characterization of intact pro-
teins and protein digests. The column reportedly is stable at pH
values as low as 1 and at temperatures as high as 90 °C.

Agilent Technologies, Santa Clara, CA. www.agilent.com
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D-Star Instruments, Inc.

o Affordable HPLC
® Systems and Detectors
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(800) 378-2712  (703) 335-0770
www.D-Star.com

Quality Instrument Design & Manufacturing

f‘t“Gcs Mar

north america

SONNTEK RX

QBD (QUALITY BY DESIGN):
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QbD (Quality by Design): A systematic approach to product
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$299-°0 Your Prescription for
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Analytical Chemist

We are seeking a highly motivated, creative, and collaborative scientist
with a strong academic background and versatile hands-on expertise to
Led by Dr. Anurag Rathore. For join our Analytical Chemistry team. The successful candidate will contribute
anyone involved in or planning to start to a number of projects supporting optimization and commercialization of
process development, characterization current lignocellulosic ethanol process and development of new biofuels
and/or validation activities. technology platforms. Experience in state-of-the-art chromatography
techniques preferred.
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HIRD EDITION
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Spot Prep System Prep-36 System

Integrated preparative . The Prep-36 solvent
solution in one module; == delivery system
including variable l is configured with
volume mixing, ! will I the robust Hitachi
automatic injection, ™ LaChrom Elite® HPLC
2-channel UV/Vis : q | ¢ . components and
detector, fraction 4 EZChrom Elite® control
collector, and control Sl for the ultimate in
software with GUI. S— preparative versatility.

e Up to 250 mL/min e 1-36 mL/min

e 250 bar e 400 bar

e |socratic, Binary, Ternary, or e |socratic, Binary, Ternary, or

Quaternary gradient formation Quaternary gradient formation

Automatic Piston Wash
Integrated Fraction Collection

e Optional back flush and/or
column switching valve

Hitachi—tne Value' L'eader in Liguid Chromatoegraphy.

Copyright @ 2011 Hitzchi High Technologies America, Inc. All rights reserved.

Hitachi High Technologies America, Inc. H I I ‘ H I

toll free: 800-548-9001 (US & Canada) .
email: Sales-LS@hitachi-hta.com In spire the Next

*LaChrom Elite is a registered trademark of Hitachi High Technologies America, Inc. Hitachi is a registered trademark of Hitachi, Ltd. EZChrom Elite is a
trademark of Agilent Technologies, Inc.
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enable exceptional separation performance, robustness and throughput Bl T
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