

Faster HPLC on **ANY** System

Start Exploring your Options Today!

See reference chart on reverse side.

Fast HPLC in **YOUR** Laboratory

Faster throughput is a driver for innovation in HPLC. Reducing particle size has been the strategy of many manufacturers to obtain Fast HPLC. The cost for the fast performance of smaller particles is the need to buy UHPLC systems due to the high backpressure of the small particles. Ascentis Express provides the fast HPLC of the smaller particles but at much lower backpressure suitable for all HPLC systems.

	Ascentis Express HPLC Columns	New UHPLC Systems
Low Cost to Evaluate	✓	
Uses Current HPLC Systems	✓	
Start Immediately	✓	
Expert Support Available Daily	✓	
Easy Transfer to other Labs	✓	
Expensive Capital Expenditure		✓
Long Trail of Paperwork for Approval		✓
Delays in Getting Set-up		✓
Overhaul SOPs		✓
Expensive User Training		✓
Columns Don't Last		✓

For more information, visit our website:

sigma-aldrich.com/express

LC|GC

north america

solutions for separation scientists

Volume 29 Number 12 December 2011
www.chromatographyonline.com

Protein Analysis and Glycoprofiling with UHPLC

Hollow-Fiber Liquid-Phase Microextraction

2011 Editorial Index

GENUINELY BETTER GC

Imitated worldwide. Never equalled.

The number one portfolio of GCs in the world. Why settle for an imitation when you can have the original and best GC from Agilent! We offer the broadest range of GC, Micro GC, GC/MS systems and analyzers for any application. Our solutions deliver the highest level of analytical performance and day-after-day productivity from sample prep through final report. Plus our sample preparation products, columns and support all come with the assurance of legendary Agilent reliability. Which is why it's no surprise that we have the largest installed base of GC solutions on earth.

Learn why we're the genuine global GC leader. www.agilent.com/chem/genuinelybetter

© Agilent Technologies, Inc. 2011

The Measure of Confidence

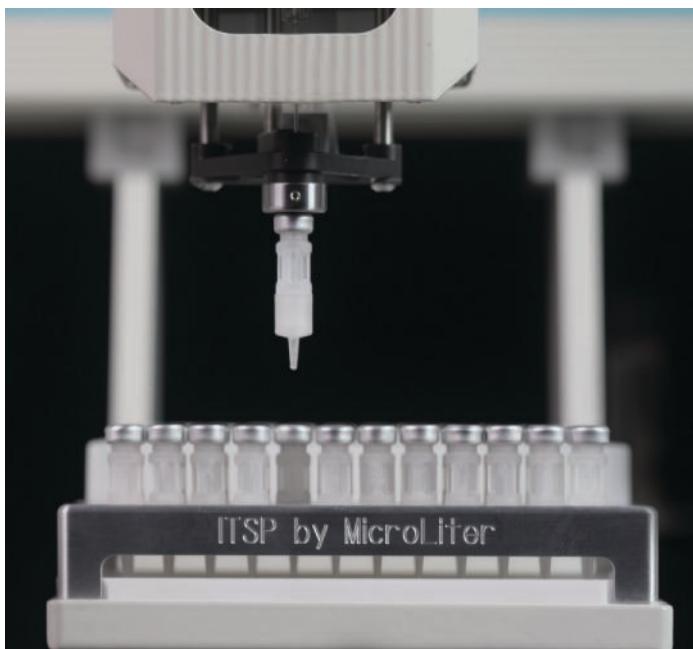
Agilent Technologies

Our technology couldn't be more state-of-the-art. Our business philosophy remains stuck in the 1950s.

As the only independent, family-owned light scattering company in the industry, we have no shareholders, investors or 3rd parties to please. We've been in business for nearly three decades, building the finest, most versatile light scattering instruments available anywhere on earth. We're passionate about your success and make sure our instruments are tools you can rely on every day. And we go to great lengths (and expense) to make sure you're delighted. Take, for example, our Light Scattering University, where we bring you to Santa Barbara, CA for three days of intensive, hands-on training (all expenses paid*). While you're here, you meet the people who design and build your instruments, learn about the software from the people who write it, and interact with the people who will be answering your questions. We don't just build instruments, we build relationships that last for years. To learn more about how you can become a member of the Wyatt instrument family of customers, visit www.wyatt.com. We think you'll appreciate our old-fashioned approach. Because whether you're buying a light scattering instrument or a bag of groceries, it's nice to be treated like you're the most important person in the world.

DAWN HELEOS®. The most advanced multi-angle light scattering instrument for macromolecular characterization.

Optilab T-rEX®. The refractometer with the greatest sensitivity and range.


ViscoStar™. The viscometer with unparalleled signal-to-noise, stable baselines and a 21st-century interface.

Eclipse. The ultimate system for the separation of macromolecules and nanoparticles in solution.

DynaPro Plate Reader. Automated, non-invasive dynamic light scattering for proteins and nanoparticles in 96 or 384 or 1536 well plates.

Industry Leaders Prove ITSP™ (Instrument Top Sample Prep) Methods for Pain Management and Drugs of Abuse from Urine Save Significant Time & Money

Results from ITSP extractions of human urine submitted in Driving Under the Influence - Drugs (DUI-D) cases were compared to industry standard techniques to see if ITSP could produce comparable results. It was concluded that analysis using ITSP/HPLC/MS/MS produces comprehensive results in less time for less money than conventional screening using Immunoassay followed by GC/MS and/or LC/MS/MS confirmation.

Also concluded:

- More drugs were found using ITSP/HPLC/MS/MS than traditional single class confirmation.
- One operator can process 50 case samples per day using both methods on one ITSP/HPLC/MS/MS.
- Current costs of expendable supplies for a five panel drug screen (FPIA) for a single confirmation utilizing traditional SPE and GC/MS or LC/MS/MS average \$16.50. Supplies for additional confirmations average \$7.00 [per panel].
- Total for all supplies to perform both ITSP/HPLC/MS/MS methods is \$12 per sample.

**For a copy of the Paper and a Means of Trying
ITSP Manually for yourself contact:**

PO Box 808 • Suwanee, GA 30024
888-232-7840 • www.microliter.com/technical

MANUSCRIPTS: For manuscript preparation guidelines, see *LCGC* 29(8), 684 (2011), or call The Editor, (732) 596-0276. *LCGC* welcomes unsolicited articles, manuscripts, photographs, illustrations, and other materials but cannot be held responsible for their safekeeping or return. Every precaution is taken to ensure accuracy, but *LCGC* cannot accept responsibility for the accuracy of information supplied herein or for any opinion expressed.

SUBSCRIPTIONS: For subscription and circulation information: *LCGC*, P.O. Box 6168, Duluth, MN 55806-6168, or call (888) 527-7008 (7:00 a.m.–6:00 p.m. central time). International customers should call +1-218-740-6477. Delivery of *LCGC* outside the United States is 14 days after printing. For single and back issues, call (800) 598-6008 or (218) 740-6480. (*LCGC Europe* and *LCGC Asia Pacific* are available free of charge to users and specifiers of chromatographic equipment in Western Europe and Asia and Australia, respectively.)

CHANGE OF ADDRESS: Send change of address to *LCGC*, P.O. Box 6168, Duluth, MN 55806-6168; alternately, send change via e-mail to magazines@superfill.com or go to the following URLs:

• Print: <https://advanstar.replycentral.com/Default.aspx?PID=469>

• Digital: <https://advanstar.replycentral.com/?PID=469&V=DIGI>

Allow four to six weeks for change. **PUBLICATIONS MAIL AGREEMENT** No. 40612608. Return all undeliverable Canadian addresses to: Pitney Bowes, P.O. Box 25542, London, ON, N6C 6B2, CANADA. Canadian GST number: R-124213133RT001.

DIRECT MAIL LIST RENTAL: Contact Tamara Phillips, tel. (440) 891-2773, e-mail TPhillips@advanstar.com.

REPRINTS: Reprints of all articles in this issue and past issues of this publication are available (500 minimum). Call (800) 290-5460, ext. 100, or e-mail AdvanstarReprints@theYGSgroup.com.

MARKETING DEVELOPMENT/CLASSIFIED: Contact Tod McCloskey, tel. (440) 891-2739, fax (440) 826-2865.

RECRUITMENT: Contact Tod McCloskey, tel. (440) 891-2739, fax (440) 826-2865.

INTERNATIONAL LICENSING: Contact Maureen Cannon, tel. (440) 891-2742, fax (440) 891-2650, or e-mail mcannon@advanstar.com.

The Association of Business Information Companies

©2011 Advanstar Communications Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including by photocopy, recording, or information storage and retrieval without permission in writing from the publisher. Authorization to photocopy items for internal/educational or personal use, or the internal/educational or personal use of specific clients is granted by Advanstar Communications Inc. for libraries and other users registered with the Copyright Clearance Center, 222 Rosewood Dr. Danvers, MA 01923, 978-750-8400 fax 978-646-8700 or visit <http://www.copyright.com> online. For uses beyond those listed above, please direct your written request to Permission Dept. fax 440-756-5255 or email: mcannon@advanstar.com.

Advanstar Communications Inc. provides certain customer contact data (such as customer's name, addresses, phone numbers, and e-mail addresses) to third parties who wish to promote relevant products, services, and other opportunities that may be of interest to you. If you do not want Advanstar Communications Inc. to make your contact information available to third parties for marketing purposes, simply call toll-free 866-529-2922 between the hours of 7:30 a.m. and 5 p.m. CST and a customer service representative will assist you in removing your name from Advanstar's lists. Outside the U.S., please phone 218-740-6477.

LCGC North America does not verify any claims or other information appearing in any of the advertisements contained in the publication, and cannot take responsibility for any losses or other damages incurred by readers in reliance of such content.

To subscribe, call toll-free 877-527-7008. Outside the U.S. call 218-740-6477.

Advanstar Communications Inc. (www.advanstar.com) is a leading worldwide media company providing integrated marketing solutions for the Fashion, Life Sciences and Powersports industries. Advanstar serves business professionals and consumers in these industries with its portfolio of 91 events, 67 publications and directories, 150 electronic publications and Web sites, as well as educational and direct marketing products and services. Market leading brands and a commitment to delivering innovative, quality products and services enables Advanstar to "Connect Our Customers With Theirs." Advanstar has approximately 1000 employees and currently operates from multiple offices in North America and Europe.

HAMILTON

50 Years of Quality

and Value

A Hamilton Microliter Syringe looks just like a simple syringe, but looks can be deceiving.

Our trained crafts people start with pharmaceutical grade glass and fine stainless steel. In all, 67 individual production operations and quality control checks are used to create a Hamilton syringe. This includes 36 individual glass operations to create the flange, attach the termination, and carefully etch the graduations using an ionic reaction with silver nitrate.

The plunger is straightened and centerless ground by precision machines, before it is hand-fitted to the barrel with a tolerance of 1 millionth of an inch. At final inspection every syringe is tested for leaks with acetone at five atmospheres pressure.

Hamilton Company's commitment to quality is equaled only by its commitment to the scientific community. A Microliter 701N was \$18.00 in 1958 and in 2012 it is \$19.80. By continually improving our manufacturing processes we have held our price without losing the pride, commitment, and quality necessary to manufacture the world standard in precision liquid measuring devices...

The Syringe with the velvet feel.

Go to www.ham-info.com/0412 to find a distributor.

TOLL FREE ORDER HOTLINE

1-888-525-2123

e-mail: sales@hamiltoncompany.com
www.hamiltoncompany.com

THE MEASURE OF EXCELLENCE™

LCGC[®]

north america

solutions for separation scientists

ADVANSTAR

Protein Analysis and Glycoprofiling with UHPLC
Hollow-Fiber Liquid-Phase Microextraction
2011 Editorial Index

Cover photography by Joe Zugcic,
Joe Zugcic Photography

Cover materials courtesy of Thermo,
WR Grace, Restek, and Agilent

ON THE WEB

NEW WEB SEMINARS

Choosing Viable Alternatives to C18 Columns in HPLC
Dick Henry, Consultant

The Benefits of Moving from Single to Multi-Detector Size-Exclusion Chromatography
Mark Potocsky, Malvern Instruments

Increasing Laboratory Efficiency and Savings with the ACQUITY UPSFC System
Dave DePasquale and Andy Aubin, Waters Corporation

Selective Separation of Carbohydrates in Pharmaceutical and Food Products Using Anion-Exchange Chromatography
Jason S. Wood, Thermo Fisher Scientific
Steven Hull, Grain Processing Corporation

PREPARATIVE CHROMATOGRAPHY

In a new roundtable, experts discuss preparative chromatography, which is widely used as a purification technique, particularly in the pharmaceutical industry.

chromatographyonline.com/TechForum

Join the LCGC Group on Facebook

Join the LCGC Group on LinkedIn

CONTENTS

SAMPLE PREP PERSPECTIVES

1038

Hollow-Fiber Liquid-Phase

Microextraction in the Three-Phase Mode — Practical Considerations

Astrid Gjelstad, Hamidreza Taherkhani, Knut Einar Rasmussen, and Stig Pedersen-Bjergaard

The practical aspects of hollow-fiber liquid-phase microextraction in the three-phase mode (HF³LPME) are described.

1046

LC TROUBLESHOOTING

Troubleshooting Basics, Part III: Retention Problems

John W. Dolan

A look at situations in which retention times are too long, too short, or inconsistent

1052

BIOTECHNOLOGY TODAY

Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans

I.S. Krull, A. Rathore, and Thomas E. Wheat

A discussion of how UHPLC is used to conduct intact protein–antibody analysis and glycoprofiling to characterize biopharmaceutical drugs

1064

Analysis of Phenazepam in Whole Blood Using Solid-Phase Extraction and LC-Tandem Mass Spectrometry

Albert A. Elian, Jeffery Hackett, and Michael J. Telepchak

Phenazepam is becoming a drug of interest in forensic laboratories. This new procedure will enable forensic toxicologists to analyze phenazepam in biological fluids quickly and easily.

1070

2011 Editorial Index

LCGC North America provides its annual editorial index, organized by authors and subjects.

DEPARTMENTS

Peaks of Interest . . . **1036** Product Resources . . **1084** Ad Index **1086**

LCGC North America (ISSN 1527-5949 print) (ISSN 1939-1889 digital) is published monthly except for two issues in August by Advanstar Communications Inc., 131 West First Street, Duluth, MN 55802-2065, and is distributed free of charge to users and specifiers of chromatographic equipment in the United States and Canada. Single copies (prepaid only, including postage and handling): \$15.50 in the United States, \$17.50 in all other countries; back issues: \$23 in the United States, \$27 in all other countries. LCGC is available on a paid subscription basis to nonqualified readers in the United States and its possessions at the rate of: 1 year (13 issues), \$74.95; 2 years (26 issues), \$134.50; in Canada and Mexico: 1 year (13 issues), \$95; 2 years (26 issues), \$150; in all other countries: 1 year (13 issues), \$140; 2 years (26 issues), \$250. Periodicals postage paid at Duluth, MN 55806 and at additional mailing offices. POSTMASTER: Please send address changes to LCGC, P.O. Box 6168, Duluth, MN 55806-6168. PUBLICATIONS MAIL AGREEMENT NO. 40612608, Return Undeliverable Canadian Addresses to: Pitney Bowes, P. O. Box 25542, London, ON N6C 6B2, CANADA Canadian GST number: R-12421313RT001. Printed in the USA.

TODAY'S MOST ADVANCED BIOANALYSIS TECHNOLOGY

IS ALSO TOMORROW'S MOST ADVANCED BIOANALYSIS TECHNOLOGY.

**THE WORLD'S FIRST COMPLIANT-READY SYSTEM
FOR REGULATED BIOANALYSIS IS YOURS TODAY.
EXPERIENCE IT AT WWW.WATERS.COM/BIOANALYSIS**

©2011 Waters Corporation. Waters, UPLC, ACQUITY UPLC, Xevo and Oasis are registered trademarks of Waters Corporation. Ostro, Sirocco and The Science of What's Possible are trademarks of Waters Corporation.

Waters
THE SCIENCE OF WHAT'S POSSIBLE.™

Don't Lose Time and Get So Frustrated.

Learn how RSA™ vials will eliminate problems caused by ordinary autosampler vials. *At the same cost.*

visit www.mtc-usa.com/rsa_glass.asp

UHPLC Flow Meter

μl/min

high pressure – low flow

SLG64-0075

- Pressure 1000 bar / 15000 psi
- Nanoliter Flow Sensing
- Ultra Short Response Time

Specifications	
Max. Flow Rates	5000 nl/min (20000 nl/min extended)
Max. Pressure	1000 bar / 15000 psi
Accuracy	down to 25 nl/min
Wetted Materials	SS316, Fused Silica, PEEK

SENSIRION
THE SENSOR COMPANY

SENSIRION Inc. Westlake Village
CA 91361, © 805-409-4900
www.sensirion.com

humidity | gas flow | differential pressure | liquid flow

Administration, Sales, and Editorial Offices

Woodbridge Corporate Plaza, 485F US Highway 1 South,
Suite 100, Iselin, NJ 08830

tel. (732) 596-0276 fax (732) 647-1235

Science Group Publisher **Michael J. Tessalone**

MTessalone@advanstar.com

Associate Publisher **Edward Fantuzzi**

EFantuzzi@advanstar.com

East Coast Sales Manager **Stephanie Shaffer**

SShaffer@advanstar.com

Editorial

Editorial Director **Laura Bush**

LBush@advanstar.com

Managing Editor **Megan Evans**

MEvans@advanstar.com

Group Technical Editor **Stephen A. Brown**

SBrown@advanstar.com

Associate Editor **Cindy Delonas**

CDelonas@advanstar.com

Art Director **Dan Ward**

DWard@media.advanstar.com

Marketing

Marketing Manager **Anne Young**

AYoung@advanstar.com

Market Development

Classified/Recruitment Sales Representative **Tod McCloskey**

TMcCloskey@advanstar.com

Direct List Rental Sales **Tamara Phillips**

TPhillips@advanstar.com

Reprints **Advanstarreprints@theYGSgroup.com**

(800) 290-5460, x100

Production and Audience Development Offices

131 West First Street, Duluth, MN 55802-2065

tel. (218) 740-7036 fax (218) 740-7223

Production Manager **David Erickson**

DErickson@media.advanstar.com

Audience Development Manager **Peggy Olson**

Polson@advanstar.com

Assistant Audience Development Manager **Gail Mantay**

GMantay@advanstar.com

Chief Executive Officer **Joseph Loggia**

Executive Vice-President, Finance & Chief Financial Officer **Theodore S. Alpert**

Executive Vice-President, Exhibitions **Tony Calanca**

Executive Vice-President, Licensing, Market Development & Europe **Georgiann DeCenzo**

Executive Vice-President, Fashion & President, MAGIC International **Chris DeMoulin**

Executive Vice-President, Chief Administrative Officer **Thomas Ehardt**

Executive Vice-President, Corporate Development **Eric I. Lisman**

Executive Vice-President, Powersports, Dental & Veterinary **Daniel Phillips**

Executive Vice-President, Fashion & President, PROJECT **Andrew Pollard**

Executive Vice-President, Chief Marketing Officer **Steve Sturm**

Executive Vice-President, Pharmaceutical/Science & CBI **Ron Wall**

Vice-President, Media Operations **Francis Heid**

Vice-President, Electronic Information Technology **J. Vaughn**

Vice-President, Electronic Media Group **Mike Alic**

Vice-President, Human Resources **Nancy Nugent**

Vice-President, General Counsel **Ward D. Hewins**

Vice-President, General Manager **David C. Esola**

Director of Content **Peter Houston**

Your ideas. Our insight. Innovative Life Science.

Creating true Life Science innovation takes more than just brilliant ideas. It takes the support of a collaboration partner with deep expertise across the entire biotherapeutic value chain. Which is why EMD Millipore is uniquely positioned to give your organization the critical insight it needs to advance your next blockbuster discovery. Find out how at www.emdmillipore.com.

EMD Millipore is a division of Merck KGaA, Darmstadt, Germany

EMD Millipore and the M logo are trademarks of Merck KGaA, Darmstadt, Germany.
© 2011 Millipore Corporation. All rights reserved.

Editorial Advisory Board

Kevin D. Altria GlaxoSmithKline, Ware, United Kingdom
Daniel W. Armstrong University of Texas, Arlington, Texas
Michael P. Balogh Waters Corp., Milford, Massachusetts
Brian A. Bidlingmeyer Agilent Technologies, Wilmington, Delaware
Dennis D. Blevins Agilent Technologies, Wilmington, Delaware
Peter Carr Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
Jean-Pierre Cherret Antec Leyden, Zoeterwoude, The Netherlands
Nelson Cooke Consultant, Hercules, California
John W. Dolan LC Resources, Walnut Creek, California
Roy Eksteen Sigma-Aldrich/Supelco, Bellefonte, Pennsylvania
Fritz Erni Novartis Pharmanalytica SA, Locarno, Switzerland
Anthony F. Fell School of Pharmacy, University of Bradford, Bradford, United Kingdom
Francesco Gasparrini Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università "La Sapienza," Rome, Italy
Joseph L. Glajch Momenta Pharmaceuticals, Cambridge, Massachusetts
Richard Hartwick PharmAssist Analytical Laboratory, Inc., South New Berlin, New York
Milton T.W. Hearn Center for Bioprocess Technology, Monash University, Clayton, Victoria, Australia
John V. Hinshaw BPL Global, Ltd., Hillsboro, Oregon
John S. Hobbs Consultant
Kiyokatsu Jinno School of Materials Science, Toyohashi University of Technology, Toyohashi, Japan
Wolfgang Lindner Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
Ira S. Krull Northeastern University, Boston, Massachusetts

Ronald E. Majors Agilent Technologies, Wilmington, Delaware
Karin E. Markides Uppsala University, Uppsala, Sweden
R.D. McDowall McDowall Consulting, Bromley, United Kingdom
Michael D. McGinley Phenomenex, Inc., Torrance, California
Victoria A. McGuffin Department of Chemistry, Michigan State University, East Lansing, Michigan
Mary Ellen McNally E.I. du Pont de Nemours & Co., Wilmington, Delaware
Imre Molnár Molnar Research Institute, Berlin, Germany
Glenn I. Ouchi Brego Research, San Jose, California
Colin Poole Department of Chemistry, Wayne State University, Detroit, Michigan
Fred E. Regnier Department of Chemistry, Purdue University, West Lafayette, Indiana
Pat Sandra Research Institute for Chromatography, Kortrijk, Belgium
Peter Schoenmakers Department of Chemical Engineering, University of Amsterdam, Amsterdam, The Netherlands
Kevin Schug University of Texas, Arlington, Texas
Lloyd R. Snyder LC Resources, Walnut Creek, California (ret.)
Michael E. Swartz Ariad Pharmaceuticals, Cambridge, Massachusetts
Klaus K. Unger Institute for Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University, Mainz, Germany
Thomas Wheat Waters Corporation, Milford, Massachusetts

CONSULTING EDITORS: Jason Anspach, Phenomenex, Inc.; Stuart Cram, Thermo Fisher Scientific; David Henderson, Trinity College; Tom Jupille, LC Resources; Sam Margolis, The National Institute of Standards and Technology; Joy R. Miksic, Bioanalytical Solutions LLC; Frank Yang, Micro-Tech Scientific.

optimizetechnologies

Innovative HPLC, UHPLC & LC/MS products

fittings filters traps guards

Introducing EXP

the new gold standard of
 extreme pressure chromatography
 hardware and consumables.

- hand-tight
- rated to 20,000 psi/1,400 bar
- auto-adjusting ZDVconnections

Unparalleled convenience & efficiency

UHPLC
www.optimizetech.com/exp

Get On The Fast Track To Success

amaZon speed™

- Increased Productivity and Throughput
- Market Leading Resolution
- Excellent Sensitivity
- Robust and Reliable
- Expanded Analytical Capabilities

The amaZon speed series of Ion Trap Mass Spectrometer elevates the performance and utility of Ion Trap MS to entirely new levels. Ideal for both Small Molecule and Proteomics applications, the amaZon speed provides unmatched mass resolution, MS/MS efficiency and highly reproducible quantitative results.

Designed to deliver a unique combination of performance, reliability and flexibility, the amaZon speed takes Ion Trap Mass Spectrometry to a much better and faster place.

To learn more, please contact your local Bruker representative and visit www.bruker.com/ms.

For research use only. Not for use in diagnostic procedures.

PEAKS of Interest

Spark Holland B.V. in Partnership with Axel Semrau GmbH & Co. KG

Spark Holland B.V. (Emmen, The Netherlands), a supplier of analytical instrumentation transferred its direct sales and service activities for its online solid-phase extraction (SPE) products and services in Germany to Axel Semrau GmbH & Co. KG (Sprockhövel, Germany). The transaction allows Axel Semrau to provide online SPE products to customers and markets in Germany.

Axel Semrau will become a "Value Added Partner" of Spark Holland, and as such, it will provide more value to the product offering along with a higher level of technical and customer support. The products supported are the online SPE systems, which include Spark's brand names Symbiosis Pico and Symbiosis Pharma. Product offerings also include consumables, such as SPE cartridges.

36th International Symposium on Capillary Chromatography

The 36th International Symposium on Capillary Chromatography (ISCC) will take place at the Palazzo dei Congressi in Riva del Garda, Italy, May 27–June 1, 2012. The four-day event will feature recent findings from leading academic and industrial experts in the form of lectures and posters. The conference will offer sessions on capillary gas chromatography, microcolumn liquid chromatography, electromigration methods, and microfabricated analytical systems. These are expected to cover lab-on-a-chip, column technology, coupled and multidimensional techniques, comprehensive techniques, hyphenated techniques, sampling and sample preparation, and trace analysis and automation.

At the meeting, the 2012 Marcel Golay Award will be presented in recognition of outstanding contributions in the field of separation science. Outstanding research work presented as oral or poster contributions by scientists 35 years and younger will be awarded the Leslie Ettre Award for research on capillary gas chromatography applied to environmental or food analyses.

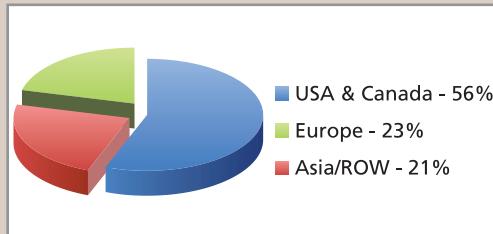
Chromatography Market Profile

GC-MS

Gas chromatography-mass spectrometry (GC-MS) combines a gas chromatographic front-end separation with a mass spectrometer. For the most part, the gas chromatographs and mass spectrometers used are modular in design and are relatively easily to separate.

GC-MS is the most widespread tandem technique in the analytical instrumentation industry. The systems are employed in many different industries, particularly for environmental, chemical, and toxicological applications.

The mass analyzers used in GC-MS include quadrupole, ion trap, and time-of-flight (TOF) analyzers. Quadrupole mass analyzers consist of four parallel rods. By simultaneously changing both the dc and rf amplitudes applied to the rods, ions of various sizes (mass-to-charge ratios) are able to pass through the quadrupole to the detector.


Ion traps use an electric field that is generated by a sandwich geometry in which a space is bounded in three dimensions by ring and cap electrodes on each end. Ions of selected m/z range are trapped in the space bound by the electrodes, and the electric field is varied to eject ions of increasing m/z for detection. Ion traps can perform multiple MS-MS dissociations as well.

In TOF mass analyzers, which operate in a pulsed mode rather than a continuous mode, all the ions are accelerated to the same kinetic energy and are pulsed into the field-region of the flight tube. Ions with different m/z values arrive at the detector at different times. Lighter atoms with higher velocities arrive before the heavier atoms.

In a recent survey of nearly 400 GC and GC-MS users conducted by Strategic Directions International (SDI), the end users were asked to rate a variety of instrument parameters according to how important they were when selecting a GC-MS instrument. Overall, system quality and reliability, sensitivity, and post-sales service and support were the highest-rated factors by the survey participants.

The accompanying figure shows the regional distribution of respondents to the survey. Participants from the United States and Canada represented the largest number of respondents, followed by Europe, Asia, and the rest of the world.

The foregoing data were extracted from SDI's Tactical Sales and Marketing (TSM) report entitled *GC and GC-MS: Global Insight into Market Trends and End-User Attitudes*. For more information, contact Glenn Cudiamat, VP of Research Services, Strategic Directions International, Inc., 6242 Westchester Parkway, Suite 100, Los Angeles, CA 90045, tel. (310) 641-4982, fax (310) 641-8851, email: cudiamat@strategic-directions.com

Regional distribution of SDI's survey of GC and GC-MS users.

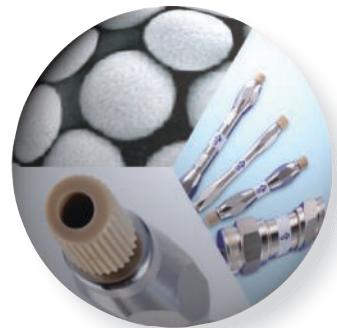
The well-known "Riva Social Programme," which includes a welcome reception, a cocktail party, and a

classical concert, will also take place. For more information, visit www.chromaleont.it/iscc. ■

It's easy to find us!

YMC America

Columns and Bulk Packing Material


Exciting, innovative, Triart hybrid C18 for HPLC, UHPLC, and prep

YMC-Triart is a layered hybrid particle that is mechanically and chemically stable for acidic, basic, and neutral analytes.

- Suitable for pH 1-12; up to 70°C
- Particle sizes: 1.9, 3, 5, 10, 20 and 50 µm
- The first multi-ton scale hybrid media in the market

A world of choices for reversed phase, normal phase, IEX, SEC, and SFC

Since 1980, YMC has developed over 30 different separation chemistries - including 20 different reversed phase chemistries - in particle sizes from 1.9 µm to 150 µm.

IEX for peptides, proteins, oligonucleotides, DNA, mAb

YMC-BioPro is an ion exchange (IEX) material based on a novel hydrophilic polymer bead with low non-specific adsorption.

- High dynamic binding capacity; excellent recovery
- Analytical columns packed with 5 µm porous or 5 µm non-porous SAX or SCX
- 30 and 75 µm SAX or SCX scouting columns, prep columns, and bulk material for purification

Around the corner, and around the world, YMC is there to serve you.

YMC
AMERICA, INC.

www.ymcamerica.com

T: 610.266.8650

F: 610.266.8652

E: info@ymcamerica.com

In this installment of "Sample Prep Perspectives," Norwegian authors from the University of Oslo describe the practical aspects of hollow fiber liquid-phase microextraction in the three-phase mode (HF³LPME). The guest authors highlight important practical issues related to the supported liquid membrane, the hollow fiber, and the extraction itself. They also discuss practical work with electromembrane extraction (EME), which is related to HF³LPME but uses an electrical potential as the driving force for the extraction.

Astrid Gjelstad, Hamidreza Taherkhani, Knut Einar Rasmussen, and Stig Pedersen-Bjergaard are the guest authors of this month's column.

Ronald E. Majors is the Column Watch Editor

SAMPLE PREP PERSPECTIVES

Hollow-Fiber Liquid-Phase Microextraction in the Three-Phase Mode — Practical Considerations

This column installment describes practical aspects of hollow-fiber liquid-phase microextraction in the three-phase mode (HF³LPME). HF³LPME is a microscale sample preparation technique (1) in which target analytes are extracted from an aqueous sample through a supported liquid membrane (SLM) that is immobilized in the pores of a porous polymeric material and into a volume of acceptor solution (typically, 10–30 µL). In this context, the porous polymeric material is a hollow fiber. Here, we highlight important practical issues related to the SLM, the hollow fiber, and the extraction itself, as these issues are important for successful HF³LPME. We also discuss practical work with electromembrane extraction (EME), which is related to the HF³LPME device but uses an electrical potential as the driving force for the extraction (2).

How Does HF³LPME Work?

HF³LPME can be used for extraction of basic or acidic analytes from aqueous samples. Figure 1 illustrates a setup for HF³LPME. The sample is contained in a sample vial and the pH is adjusted in the sample before extraction to keep the analytes in their uncharged state. For basic analytes, the sample is made alkaline, and for acidic analytes, the sample is acidified. A small piece of a porous hollow fiber, typically made of polypropylene, is closed in one end and dipped in an organic solvent immiscible with water. In a few seconds, this organic solvent is immobilized in the pores in the wall of the hollow fiber by capillary forces, forming an SLM. A 10–30 µL

volume of aqueous acceptor solution is then injected into the lumen of the hollow fiber. For basic analytes, the acceptor solution is acidic, whereas it is alkaline for acidic analytes. The hollow fiber is finally placed into the sample and the whole assembly (sample vial and hollow fiber) is agitated for typically 15–45 min. During this time, analyte molecules are extracted in their uncharged state from the sample into the SLM, and further into the acceptor solution. In the acceptor solution, the analyte molecules become ionized, which prevents them from re-entering the SLM. After extraction, the acceptor solution is collected and analyzed directly by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), mass spectrometry (MS), or other related analytical techniques.

The major advantages of HF³LPME can be summarized as follows:

- High enrichment (up to 25,000-fold) (3)
- Excellent sample cleanup
- Direct compatibility with HPLC, CE, and MS
- Low solvent consumption (10–30 µL of solvent per extraction)

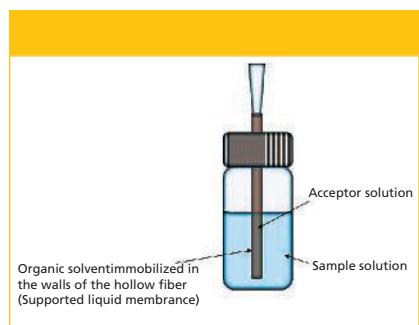
Advantages, as well as limitations, of HF³LPME have been discussed substantially in the literature and several reviews discussed a broad range of applications (4–11).

Which Hollow Fibers Are Used for HF³LPME?

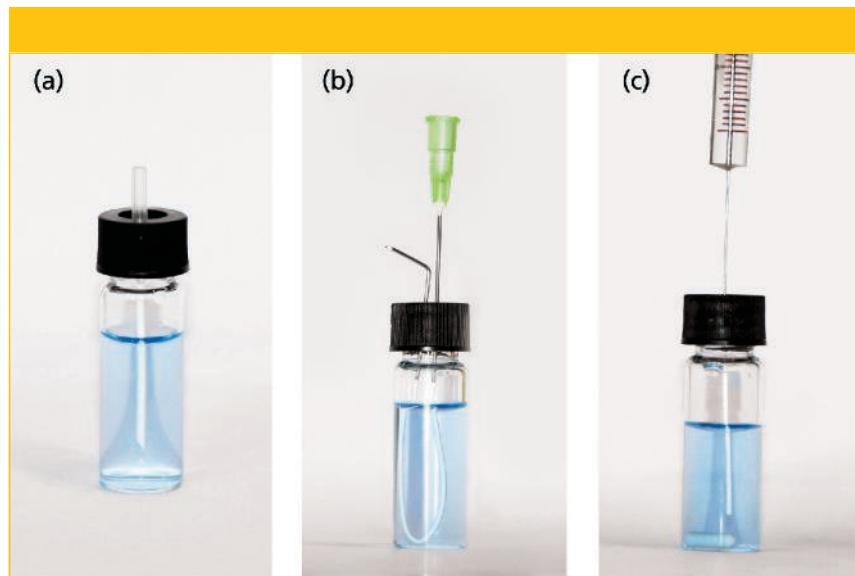
The porous hollow fibers used for HF³LPME typically are made of polypropylene (4). Most work published in the literature has been accomplished with a polypropylene hollow fiber from

Membrana (Wuppertal, Germany) termed "Q3/2" that has an internal diameter of 600 μm , a wall thickness of 200 μm , and a pore diameter of 0.2 μm (4). The hollow fiber is connected to a precut pipette tip or a medical syringe needle. The pipette tip or syringe needle serves as a guide tube to facilitate the injection and withdrawal of the acceptor solution, as illustrated in Figure 2. The fiber can be arranged either in the loop configuration with connections in both ends (Figure 2b) or in the rod configuration with a connection in one end and the other end closed (Figure 2a). To close the hollow fiber, mechanical pressure with a pair of pincers can be used — no heat or glue is required. In our laboratory, we use pipette tips for the connections. In this case, we carefully heat the connection between the tip and the fiber with a soldering iron to prevent disrup-

tion. Alternatively, the hollow fiber also can be attached directly to the needle of a microsyringe for easy injection and withdrawal of the acceptor solution, as illustrated in Figure 2c (12). Alternative fiber dimensions also can be used, but generally the thickness of the wall of the fiber should not exceed 200–300 μm because the extraction speed and the recovery are dependent on the thickness of the SLM. Fibers with internal diameters less than 600 μm have been reported to speed up HF³LPME with small volumes of acceptor solution for high enrichment (3), and hollow fibers with internal diameters larger than 600 μm have been used for easier injection and withdrawal of the acceptor solution (13,14).


What Solvents Can Be Used as the SLM?

In HF³LPME, the SLM is an intermediate extraction medium. Analytes should be extracted rapidly and efficiently into the SLM, but transport out of the SLM and into the acceptor phase also should be efficient to avoid substantial trapping of analytes in the SLM itself. Substantial trapping in the SLM is undesirable because it reduces the extraction recovery. In other words, finding the optimum SLM solvent for the application is an important step.


For HF³LPME, dihexyl ether and 1-octanol have been the most popular SLM solvents (4). As seen in Table I,

these two solvents have a high boiling point (>195 °C), and when the hollow fiber is dipped in the solvents, little or almost no evaporation of the SLM is observed during 2 min of air exposure (Table I). This observation is important because the hollow fiber with the immobilized SLM is normally exposed for a short time (<2 min) to open air before it is placed in the sample. After the hollow fiber with the SLM is inserted in the sample in a capped vial, evaporation is no longer an issue because the SLM is protected by the aqueous sample and the system is closed. Volatile solvents such as toluene and 1-chloropentane may be difficult to use in HF³LPME because they evaporate quickly and give an unstable SLM (see Table I). In general, it is recommended not to use solvents with a boiling point below 190–200 °C for HF³LPME.

In addition to the volatility of the solvent, the water solubility also is important. For dihexyl ether, the water solubility is low (<110 $\mu\text{g}/\text{mL}$), therefore, SLMs made from this solvent are very stable during extraction. With 1-octanol, the water solubility is higher (1200 $\mu\text{g}/\text{mL}$) and this solvent may leak into the sample (and the acceptor solution) in significant amounts. As seen in Table I, about 11% of an 1-octanol SLM may theoretically leak into 1 mL of sample based on the water solubility, resulting in a significant reduction of the SLM. This level of SLM leakage has been verified experimentally in our laboratory by analyzing the sample solution after HF³LPME with gas chromatography–mass spectrometry (GC–MS) to determine traces of 1-octanol. This loss may be even greater if the sample volume is increased or if surfactants and other emulsifying agents are present in the sample. In general, it is preferred not to use solvents exceeding 200–400 $\mu\text{g}/\text{mL}$ in terms of water solubility. In addition to dihexyl ether, solvents such as 1-decanol, dodecyl acetate, 2-nitrophe-nyl octyl ether, and 1-nananol fulfill the criteria discussed above and have been used in HF³LPME studies (Table I) (4). Some new solvents that have been tested recently in our laboratory for HF³LPME also are included in Table I and may be interesting SLM candidates for the future.

Figure 1: Illustration of a typical hollow-fiber liquid-phase microextraction in the three-phase mode (HF³LPME) setup.

Figure 2: Different configurations for hollow-fiber liquid-phase microextraction in the three-phase mode (HF³LPME): (a) rod configuration, (b) loop configuration, and (c) hollow fiber attached directly to the needle of a microsyringe.

Table I: Boiling point, evaporation, water solubility, and dissolution data for various solvents for hollow-fiber liquid-phase microextraction in the three-phase mode (HF³LPME)

	Boiling point* (°C)	Evaporation of SLM from Fiber After 2 min in Open Air [†] (%)	Water Solubility [‡] (µg/mL)	Potential Dissolution of SLM from Fiber into Sample [§] (%)
Frequently Used Solvents				
Dihexyl ether	223	0.0	110	1.0
1-Octanol	195	0.8	1200	11
Less Frequently Used Solvents				
1-Chloropentane	107	40.6	180	1.6
1-Decanol	228	0.0	120	1.1
Dodecyl acetate	265	0.0	20	0.2
2-Nitrophenyl octyl ether	351	0.0	6	<0.1
1-Nonanol	212	0.0	390	3.5
2-Octanone	173	1.6	2300	21
Toluene	111	34.5	320	2.9
Future Alternative Solvents				
2,2-Dimethyl-1-propylbenzene	209	1.6	1.9	<0.1
2-Hexyl-1-decanol	304	0.0	0.039	<0.1
Isopentyl benzene	193	0.7	2.5	<0.1
Nitrostyrene	239	0.0	300	2.7

^{*}Data obtained from SciFinder[†]Measured with an analytical balance[‡]Data obtained from SciFinder, at 25 °C and pH 10[§]Calculated from the water solubility data based on a sample volume of 1 mL

How Much Does the SLM Affect the Extraction?

Table II (basic drugs as model analytes) and Table III (acidic drugs as model analytes) illustrate recent examples from our laboratory in which the extraction recovery in HF³LPME was strongly affected by the type of solvent used in the SLM. For the basic model analytes, the highest recoveries were obtained with dodecyl acetate, 2-octanone, and isopentyl benzene as the SLM solvent. For the acidic drugs, dodecyl acetate, isopentyl benzene, and 1-decanol were the top three SLM solvent candidates. A closer look at the results in Tables II and III indicate several important aspects. First, recoveries were generally higher for the acidic model analytes than for the basic model analytes. The reason for this result was probably that the selected acidic model analytes were slightly more polar than the basic ones. From earlier experience (15), it is well known that

extraction recoveries in HF³LPME are highest for analytes with log P values in the 2–4 range, whereas the extractability decreases somewhat for analytes with log P values exceeding 4. The basic model analytes in Table II were highly hydrophobic (log P in the 3.1–5.3 range), and extraction from the organic SLM and into the aqueous acceptor phase was somewhat limited by partition. Because of this, selection of the solvent was very important for the basic model analytes. Second, the extraction performance of each of the solvents was checked against the Snyder solvent selectivity classification system (16). The two top solvents, namely dodecyl acetate and 2-octanone, were both class VI solvents (aliphatic ketones and esters) and the next two solvents were both class VII solvents (aromatic hydrocarbons). Although relatively different in terms of chemical structure, class VI and VII solvents are close to each other in terms of solvent selectivity

properties with relatively strong proton acceptor and dipole characteristics.

A somewhat different picture was observed for the acidic model analytes in Table III. Because these analytes were less hydrophobic, with log P values in the 2.9–4.3 range, they were more easily extracted from the organic SLM and into the aqueous acceptor phase. Therefore, the selectivity of the solvent was less critical for these analytes. Thus, the five top solvents, all of which provided average recoveries of 70% or more, belonged to Snyder classes I, II, VI, and VII. These solvents have substantial differences in terms of solvent selectivity, proton acceptor, proton donor, and dipole characteristics.

In general, solvent selection in HF³LPME has been carried out mainly by trial and error, testing a limited number of candidates including dihexyl ether and 1-octanol. Most likely, more systematic approaches will be developed in the

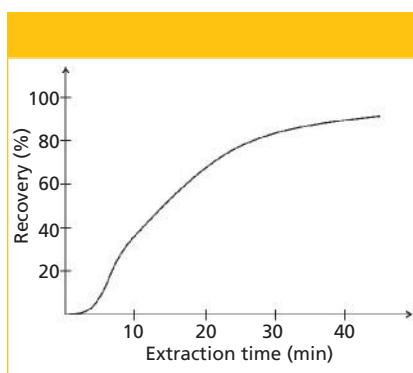
Table II: Hollow-fiber liquid-phase microextraction in the three-phase mode (HF³LPME) performance ranking of solvents for basic model analytes

Solvent Rank	Recovery (%) (n = 3)					
	Droperidol	Haloperidol	Nortriptyline	Clomipramine	Clemastine	Average*
Dodecyl acetate	70	64	65	48	62	62
2-Octanone	85	54	54	41	49	57
Isopentyl benzene	55	65	68	41	43	54
2,2-Dimethyl-1-propylbenzene	39	58	69	40	41	49
Dihexyl ether	29	48	50	48	59	47
2-Nitrophenyl octylether	28	57	64	41	41	46
3-Nitrostyrene	65	46	47	21	18	39
1-Nonanol	68	21	38	15	10	30
1-Octanol	67	19	35	22	14	29
2-Hexyl-1-decanol	21	26	40	28	25	28
1-Decanol	65	20	32	11	8	27

*Average of recoveries reported for droperidol, haloperidol, nortriptylin, clomipramine, and clemastine

Table III: Hollow-fiber liquid-phase microextraction in the three-phase mode (HF³LPME) performance ranking of solvents for acidic model analytes

Solvent Rank	Recovery (%) (n = 3)				
	Ibuprofen	Naproxen	Ketoprofen	Gemfibrozil	Average*
Dodecyl acetate	83	82	83	79	82
Isopentyl benzene	83	83	61	83	78
1-Decanol	74	77	71	70	73
3-Nitrostyrene	71	71	74	69	71
1-Octanol	70	72	69	69	70
2,2-Dimethyl-1-propyl benzene	70	70	60	70	67
1-Nonanol	68	69	66	58	65
2-Nitrophenyl octylether	68	67	48	71	63
2-Hexyl 1-decanol	60	56	34	55	51
Dihexyl ether	8	39	6	2	14
2-Octanone	nd	nd	nd	nd	nd


*Average of recoveries reported for ibuprofen, naproxen, ketoprofen, and gemfibrozil

future that will take further solvent properties into consideration. It also should be mentioned that HF³LPME is best suited for analytes with $\log P > 2$. For analytes with $\log P < 2$, extraction is more challenging and requires the addition of a carrier such as an ion-pair reagent either to the sample or the SLM (15).

How Should the Dry Hollow Fiber Be Handled?

The dry hollow fibers for HF³LPME typically are purchased as bundles from the manufacturer. No hollow fibers are currently manufactured specifically for HF³LPME; instead they are industrial products for totally different applications.

We recommend storing the hollow fibers in a closed bag protected from light, because air and light exposure over long time periods might degrade the mechanical stability of the hollow fiber and make it more fragile. Before use, the hollow fiber needs to be cut to form pieces of appropriate length. We recommend using

Figure 3: Recovery versus extraction time for haloperidol. Supported liquid membrane: 2-nitrophenyl octylether; sample: 1 mL of 25 mM ammonia buffer pH 10 containing 1 μ g/mL haloperidol; acceptor solution: 25 μ L of 10 mM HCl.

gloves when cutting the fiber to avoid contaminating it. It is important that each piece be cut to exactly the same length. If fibers are of different lengths, the volume of the SLM will vary from extraction to extraction, and this may give some variation in the results. In two-phase hollow-fiber liquid-phase microextraction it is common to wash the hollow fiber with acetone before extraction to remove additives in the polymeric material (17). This is less important in HF³LPME because the acceptor solution is aqueous and most polymer additives are not soluble in aqueous solution. However, for extraction of very hydrophobic analytes, recoveries may be slightly improved if the hollow fiber is prewashed with acetone (18). Each piece of hollow fiber is for single use and should always be discarded after extraction to avoid carryover from one extraction to another.

How Should the SLM Be Prepared?

The SLM normally is prepared by dipping the hollow fiber into the organic solvent for 5–10 s. The organic solvent is immediately immobilized in the pores in the wall of the hollow fiber by capillary forces. This procedure is very simple, but the exact amount of organic solvent is unknown, and excess organic solvent may be located on the surface of the hollow fiber. In such cases, it is recommended to remove excess solvent from the hollow fiber. This can be accomplished either by wiping the fiber with a medical wipe or exposing the fiber and the SLM to ultrasonification in a water

bath for 5–10 s. The former method (medical wipe) is recommended, as this procedure has been reported to yield the most reproducible SLM (18).

Alternatively, the organic solvent can be injected into the lumen of the hollow fiber using a microsyringe. In this procedure, the SLM is coated from the inside of the hollow fiber. The advantage here is that the volume of the SLM solvent is controlled more exactly; this approach may be interesting for future automation of HF³LPME. The typical volume of the SLM solvent in one piece of hollow fiber is 10–30 μ L.

It is recommended to immobilize the SLM solvent in the hollow fiber in the shortest amount of time possible before the extraction. This is done to avoid partial evaporation of the SLM solvent and so that the SLM solvent is not gradually swelled into the polymer itself. With solvents like dihexyl ether and 1-octanol, swelling may totally interrupt the SLM after a few days of storage. Other solvents have been found to be highly stable as the SLM solvent, and they may be immobilized for up to 60 days before use. These solvents include silicone oil AR 20 (polyphenyl-methylsiloxane), 2-nitrophenyl octyl ether, and dodecyl acetate (18).

How Should the Acceptor Solution Be Loaded?

When the SLM is prepared, the acceptor solution has to be injected into the lumen of the hollow fiber. This is accomplished with a microsyringe. Loading exact and constant volumes of acceptor solution from extraction to extraction is important to obtain the highest repeatability. Make sure that injection of the acceptor solution is performed slowly. Rapid injection of the acceptor solution into the narrow hollow fiber may cause air bubbles, which results in small segments of the hollow fiber containing no active acceptor solution. Air bubbles in the hollow fiber from rapid injection can affect the results significantly and sacrifice repeatability (18).

How Should the Actual Extraction Be Performed?

Extraction is initiated at the time when the hollow fiber, containing both the SLM and the acceptor solution, is placed in the sample. Exact timing of the extraction is important, and the

time for each extraction should be measured from the point when the fiber is placed in the sample. Immediately, the whole assembly (sample plus the hollow fiber) should be transferred to an agitator. Agitation (or stirring) is important to facilitate extraction and constantly replenish the sample in close contact with the SLM. Normally, we recommend agitating the entire extraction unit (sample vial and hollow fiber) at 800–1200 rpm, but stirring with small magnetic stir bars also may be used. Normally, HF³LPME is accomplished at room temperature with no external temperature control.

How Should the Extraction Be Finished?

When the extraction has been completed at an exact stop time, the hollow fiber should be removed immediately from the sample to stop the extraction. This is especially important if extractions are not carried out to equilibrium as shown in Figure 3. Additionally, the acceptor solution should be removed immediately from the hollow fiber to avoid partial back-extraction into the SLM and loss of analyte. The acceptor solution normally is removed with a microsyringe and transferred to a sample vial for the final analysis by HPLC or CE. Because the acceptor solution volumes typically used are low, the acceptor solution should be protected from evaporation. Therefore, storage at low temperature in a closed vial is highly recommended. When the acceptor solution is removed from the hollow fiber, it also is important to check the volume of the acceptor phase. Occasionally, the volume collected after extraction is different compared to what was injected into the hollow fiber before extraction; this volume difference is a clear indication of leakage in the system. In such cases, the acceptor solution should be discarded.

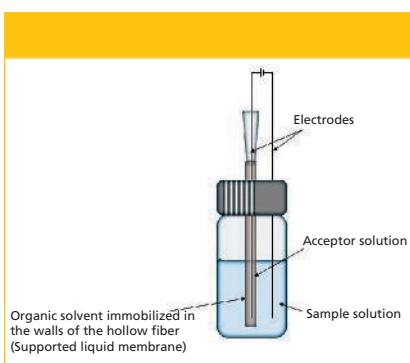
What About pH Effects?

In HF³LPME of basic and acidic compounds, the pH of the sample and the acceptor solution is highly important. For basic analytes, the pH of the sample should be high to suppress ionization of the basic substances and promote their extraction into the SLM, whereas the pH of the acceptor solution should be low to ionize the basic substances upon arrival

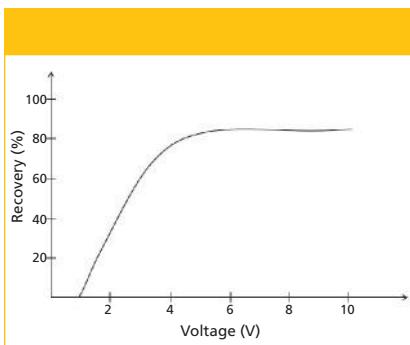
NEW!

True Blue Performance

Exceptionally inert, Sky™ inlet liners with **state-of-the-art deactivation** improve trace level analysis.


- Increase accuracy and precision
- Lower detection limits
- Use wool with confidence

Sky™
Inlet Liners



RESTEK

Visit us at www.restek.com/sky

Figure 4: Illustration of a typical electromembrane extraction (EME) setup.

Figure 5: Recovery versus voltage for haloperidol. Supported liquid membrane: 1-isopropyl-4-nitrobenzene; sample: 1 mL of 10 mM HCl containing 1 μ g/mL haloperidol; acceptor solution: 25 μ L of 10 mM HCl; extraction time: 5 min.

in the acceptor solution. The latter effect also prevents the analytes from re-entering the SLM. The strong pH-gradients across the SLM serve as the driving force for the extraction. For basic analytes, we normally recommend adjusting the pH 1–3 units above the pK_a values of the analytes in the sample and 1–3 units below their pK_a values in the acceptor solution. Typically, the sample is made alkaline with sodium hydroxide, whereas hydrochloric acid (10 mM) or formic acid (LC–MS friendly) is used as the acceptor solution (4). For acidic substances, the pH gradient is reversed, with acidic conditions in the sample and alkaline conditions in the acceptor solution. Usually, hydrochloric acid is used to acidify the sample, whereas 10 mM sodium hydroxide or ammonia solution (LC–MS friendly) is used as the acceptor solution (4).

What About EME?

Electromembrane extraction (EME) also is an extraction method for basic or acidic analytes from aqueous samples. Figure 4 illustrates the setup of EME.

The setup and procedure are very similar to those used for HF³LPME. In EME, electrodes are inserted into both the sample and the acceptor solution and the electrodes are connected to a dc electrical power supply. In EME, an electrical potential of typically 5–100 V is applied

over the electrodes, creating an electrical field over the SLM. This electrical field is the principal driving force for extraction in EME. For EME of basic analytes, the anode is located in the sample, whereas the cathode is placed in the acceptor solution. The sample has to be acidified to make sure that the basic analytes are ionized in the sample. Thus, the basic analytes are extracted as protonated species from the sample, through the SLM, and into the acceptor solution. The acceptor solution also is acidic to support the electrokinetic transfer and to avoid back-extraction into the SLM. For acidic analytes, the direction of the electrical field is reversed, and alkaline conditions are used in the sample and the acceptor solution to maintain the analytes in their charged configuration. The advantages discussed above for HF³LPME are more or less the same for EME. However, EME is faster than HF³LPME because the driving force is an electrical potential rather than a pH gradient. EME often can be finished after 5 min. Several reviews have been published summarizing current applications of EME (19–23).

The practical details discussed above for HF³LPME are also valid, more or less, for EME, but the following differences are important:

- EME is performed with other solvents for SLM as compared to HF³LPME.
- EME is performed with pH conditions different from those used in HF³LPME.
- The extraction voltage should be selected with care in EME.
- The current flowing in the extraction system should be measured in EME.

For EME of basic substances, solvents such as 2-nitrophenyl octyl ether (NPOE), 1-ethyl-2-nitrobenzene, and 1-isopropyl-4-nitrobenzene are typically used (2,24–28). For extraction of more polar substances, an ion-pair or another modifier is added to these solvents to facilitate the mass transfer of analytes across the SLM. Typical

examples are di-(2-ethylhexyl) phosphate (DEHP) and tris-(2-ethylhexyl) phosphate (TEHP) (24,29,30). Acidic compounds have been extracted only a few times by EME and, in those cases, 1-octanol was used as the principal SLM (31,32).

The pH conditions in the sample and in the acceptor solution should be selected to ensure ionization of the analytes and promote their electrokinetic migration across the SLM. Extraction of basic analytes is carried out under acidic conditions, typically using dilute hydrochloric acid or formic acid in both the sample and the acceptor solution. However, several basic drugs have been extracted from physiological pH (pH 7.4) solutions when they are still ionized. Acidic analytes are extracted with alkaline conditions in the sample or acceptor solution, typically obtained with dilute sodium hydroxide or ammonia solution.

In EME, the driving force for the extraction is the electrical potential, and this parameter must be optimized. Normally, extraction recoveries increase with increasing voltage up to a certain level until there is no further gain in recovery, as illustrated in Figure 5. The optimal voltage must be established by experimental optimization, as this voltage is dependent on both the analytes and the composition of the SLM. Usually, voltages in the range of 5–100 V are used. During EME, the exact timing of the extraction is important for repeatable data, and we strongly recommend measuring the current flowing in the system. This is accomplished by a microammeter coupled in series with the cable from the power supply. We suggest not operating the system at currents higher than 100 μ A because higher currents may cause bubble formation in both the sample and the acceptor solution because of excessive electrolysis.

Conclusion

This column installment focuses on practical considerations regarding HF³LPME and describes the most important issues for a successful extraction. The first step in the development of a new HF³LPME application is the choice of the hollow fiber, including

the material, size, and configuration. When deciding on the SLM, important factors to consider are the capability of the organic solvent to act as an intermediate extraction medium, the boiling point, and the water solubility. Some new experimental data regarding the leakage of the SLM into the aqueous samples are included in this column installment; likewise the suggestion of some new organic solvents that are usable in HF³LPME are mentioned. The practical steps in an HF³LPME procedure are covered in detail, including the handling of the dry hollow fiber, preparation of the SLM, loading of the acceptor solution, convection of the sample during the extraction, and finishing the extraction procedure. The importance of correct pH in the sample solution and in the acceptor solution is discussed. The central issues mentioned also are highly relevant in the procedure of EME, which has been introduced as a faster alternative to HF³LPME.

Interest in HF³LPME has been growing for the last decade, although ready-to-use equipment is still not commercially available. We hope that further work in this direction by instrument manufacturers will help HF³LPME become a viable extraction method. Likewise, automation of the various steps described in this paper will establish HF³LPME as a useful and robust sample preparation method in the future.

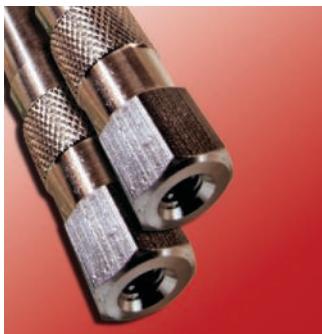
References

- (1) S. Pedersen-Bjergaard and K.E. Rasmussen, *Anal. Chem.* **71**, 2650 (1999).
- (2) S. Pedersen-Bjergaard and K.E. Rasmussen, *J. Chromatogr. A.* **1109**, 183 (2006).
- (3) T.S. Ho, T. Vasskog, T. Anderssen, E. Jensen, K.E. Rasmussen, and S. Pedersen-Bjergaard, *Anal. Chim. Act.* **592**, 1 (2007).
- (4) S. Pedersen-Bjergaard and K.E. Rasmussen, *J. Chromatogr. A.* **1184**, 132 (2008).
- (5) J.Y. Lee, H.K. Lee, K.E. Rasmussen, and S. Pedersen-Bjergaard, *Anal. Chim. Act.* **624**, 253 (2008).
- (6) A. Sarafraz-Yazdi and A. Amiri, *TrAC-Trends Anal. Chem.* **29**, 1 (2010).
- (7) R. Lucena, M. Cruz-Vera, S. Cárdenas, and M. Valcárcel, *Bioanal.* **1**, 135 (2009).
- (8) L.M. Zhao, H.K. Lee, and R.E. Majors, *LCGC N. Amer.* **28**(8), 580–591 (2010).
- (9) H. Kataoka, *Anal. Bioanal. Chem.* **396**, 339 (2010).
- (10) L. Arce, L. Nozal, B.M. Simonet, M. Valcárcel, and A. Ríos, *TrAC-Trends Anal. Chem.* **28**, 842 (2009).
- (11) C. Mahugo-Santana, Z. Sosa-Ferrera, M.E. Torres-Padron, and J.J. Santana-Rodriguez, *TrAC-Trends Anal. Chem.* **30**, 731 (2011).
- (12) L.Y. Zhu, L. Zhu, and H.K. Lee, *J. Chromatogr. A.* **924**, 407 (2001).
- (13) A. Børhovde, T.G. Halvorsen, K.E. Rasmussen, and S. Pedersen-Bjergaard, *Anal. Chim. Act.* **491**, 155 (2003).
- (14) G. Ouyang and J. Pawliszyn, *Anal. Chem.* **78**, 5783 (2006).
- (15) S. Pedersen-Bjergaard, K.E. Rasmussen, A. Brekke, T.S. Ho, and T.G. Halvorsen, *J. Sep. Sci.* **28**, 1195 (2005).
- (16) L.R. Snyder, *J. Chromatogr. Sci.* **16**, 223 (1978).
- (17) L.M. Zhao and M.K. Lee, *Anal. Chem.* **74**, 2486 (2002).
- (18) K.F. Bardstu, T.S. Ho, K.E. Rasmussen, S. Pedersen-Bjergaard, and J.A. Jonsson, *J. Sep. Sci.* **30**, 1364 (2007).
- (19) S. Pedersen-Bjergaard and K.E. Rasmussen, *Anal. Bioanal. Chem.* **388**, 521 (2007).
- (20) A. Gjelstad, *LCGC Eur.* **23**(3), 152 (2010).
- (21) P. Kubáň, A. Šlampová, and P. Boček, *Electrophor.* **31**, 768 (2010).
- (22) A. Gjelstad and S. Pedersen-Bjergaard, *Bioanal.* **3**, 787 (2011).
- (23) D.E. Raynie, *Anal. Chem.* **82**, 4911 (2010).
- (24) A. Gjelstad, K.E. Rasmussen, and S. Pedersen-Bjergaard, *J. Chromatogr. A.* **1124**, 29 (2006).
- (25) A. Gjelstad, T.M. Andersen, K.E. Rasmussen, and S. Pedersen-Bjergaard, *J. Chromatogr. A.* **1157**, 38 (2007).
- (26) I.J.O. Kjelsen, A. Gjelstad, K.E. Rasmussen, and S. Pedersen-Bjergaard, *J. Chromatogr. A.* **1180**, 1 (2008).
- (27) A. Gjelstad, K.E. Rasmussen, and S. Pedersen-Bjergaard, *Anal. Bioanal. Chem.* **393**, 921 (2009).
- (28) L.E.E. Eibak, A. Gjelstad, K.E. Rasmussen, and S. Pedersen-Bjergaard, *J. Chromatogr. A.* **1217**, 5050 (2010).
- (29) S. Seidi, Y. Yamini, T. Baheri, and R. Feizbakhsh, *J. Chromatogr. A.* **1218**, 3958 (2011).
- (30) S. Seidi, Y. Yamini, A. Saleh, and M. Moradi, *J. Sep. Sci.* **34**, 585 (2011).
- (31) M. Balchen, A. Gjelstad, K.E. Rasmussen, and S. Pedersen-Bjergaard, *J. Chromatogr. A.* **1152**, 220 (2007).
- (32) M.R. Payán, M.Á.B. López, R.F. Torres, M.V. Navarro, and M.C. Mochón, *Talanta* **85**, 394 (2011).

Astrid Gjelstad
is a postdoctoral researcher in the School of Pharmacy at the University of Oslo, in Oslo, Norway.

Hamidreza Taherkhani
completed his master's thesis in drug analysis in June 2011 at the School of Pharmacy at the University of Oslo, in Oslo, Norway.

Knut Einar Rasmussen
is a professor in the School of Pharmacy at the University of Oslo, in Oslo, Norway.


Stig Pedersen-Bjergaard
is a professor in the School of Pharmacy at the University of Oslo, in Oslo, Norway.

Ronald E. Majors
"Sample Prep Perspectives" Editor Ronald E. Majors is a Senior Scientist in the Columns and Supplies Division at Agilent Technologies in Wilmington, Delaware, and is a member of LCGC's editorial advisory board. Direct correspondence about this column via e-mail to lcgcedit@lcgcmag.com.

For more information on this topic, please visit
www.chromatographyonline.com/majors

LC TROUBLESHOOTING

Troubleshooting Basics, Part III: Retention Problems

What causes peaks to appear where they don't belong?

This is the third installment in a series focusing on some of the basic principles of troubleshooting liquid chromatography (LC) methods. First, we looked at some general practices for troubleshooting any LC problem (1). Then we looked at problems whose symptoms are related to pressure changes (2). This month, we'll concentrate on problems exhibited as abnormal retention times. As a means to organize the discussion, let's look at situations where retention times are too long, too short, or inconsistent.

What Controls Retention?

Before we look at specific problems, let's take a moment to consider the things that influence retention. We can categorize these as the mobile phase, the stationary phase (column), the hardware, the environment, and the sample. Let's simplify this discussion and assume that nothing has happened to the sample, such as degradation or other chemical changes.

The mobile phase can change because of an error in formulating it, such as a mistake in volumetric measurement or adjustment of the pH. If an error in formulating the mobile phase is suspected, it is best to make a new batch to see if it fixes the problem. Some mobile phases can change over time because of chemical degradation, selective evaporation of one component, or microbial growth in highly aqueous mobile phases. Again, reformulation is the best way to verify this problem source. Most of us use on-line mixing to prepare isocratic mobile phases. An error in instrument settings or hardware failure can be the cause of errors in on-line mixing. Check for proper degassing and pump operation,

as well as the correct control-program settings. Sometimes hand-mixed mobile phases can be used as a check for on-line mixing, or alternate mixing channels can be used for both isocratic and gradient methods (for example, use the C and D solvent reservoirs instead of A and B in a four-solvent LC system).

The stationary phase in the column has a finite lifetime, generally in the 500–2000 sample range (or more), depending on the nature of the sample. Every column will die eventually, and some methods are harder on columns than others. For example, mobile phases outside the pH 2–8 region accelerate the degradation of silica-based columns. Some column types have shorter lifetimes than others. For example, cyano and amino columns are unlikely to last as long as C8 or C18 columns, which tend to be quite robust. In addition to changes in retention, column failure usually is accompanied by a rise in system pressure and an increase in peak tailing. Replacement of a suspect column with a new one is the easiest way to check for column-related problems.

System hardware problems that generate symptoms of changed retention most commonly are associated with pump malfunctions or leaks. Pump problems can be checked with a simple flow-rate measurement with a stop watch and volumetric flask. A secondary symptom of pump problems may be high, low, or fluctuating pressure. Low flow may be associated with faulty check valves, worn pump seals, air bubbles in the pump, or errors in pump settings. Cleaning, component replacement, or degassing should correct such problems. High flow rates usually are a result of improper settings.

Now sold under the
Thermo Scientific brand

Run IC Samples Any Time 24/7

Speed • Simplicity • Solutions

ICS-5000 Capillary IC allows you to run your samples when you need to . . .
that's IC on demand.

On Demand means:

- No Start-Up Time = Instant Results
- No Equilibration = Saves Time
- Less Frequent Calibration = Faster Results

ICS-5000 Capillary IC delivers
speed, simplicity, and solutions.
Visit www.dionex.com/gettheproof

 DIONEX

Part of Thermo Fisher Scientific

The most common environmental cause of retention changes is a change in column temperature. This effect is common if the column oven is not used or is not working properly. Methods that operate under ambient conditions are highly susceptible to failure, especially if the laboratory temperature is not well controlled. In my travels, I have encountered laboratory temperatures ranging from 10 °C (central China in January) to 35 °C (Tel Aviv in June). If we use the rule of thumb that retention can change by 2% with each 1 °C change in temperature, you can imagine the result if the same method were run in both of those laboratories under ambient conditions! Use the column oven and make sure that it is operating properly.

Two Important Measurements

One tool that can be very useful in diagnosing the source of retention problems is the retention factor (also called the capacity factor, k'). Recall that the retention factor, k , is calculated as

$$k = (t_R - t_0)/t_0 \quad [1]$$

where t_R is the retention time and t_0 (sometimes abbreviated as t_M) is the column dead time, usually measured by the first disturbance in the baseline (the "solvent front"). Another useful calculation is the selectivity, or relative retention, α ,

$$\alpha = k_2/k_1 \quad [2]$$

where k_1 and k_2 are the k -values for the first and second peaks of an adjacent peak pair, respectively.

Notice that changes in flow rate, whether intentional or due to a leak, will change both t_0 and t_R proportionally, so k will remain constant for such changes. On the other hand, chemical changes will change only t_R , so the k value is changed, too. Generally, when the k value is changed it does not change exactly the same for all peaks in the chromatogram. One way to confirm chemical changes in the system is to check the α value; if α changes, a chemical source of the problem is most likely. Because k and α are so useful in distinguishing between flow-related

and chemical changes, it is a good idea to make these measurements a part of the process for troubleshooting retention-time problems.

Excessive Retention

When retention times increase and k -values stay constant, a flow-rate problem is indicated. Double-check the flow-rate setting to be sure you didn't make a mistake. Leaks and pump problems are the two most common remaining causes. Check for leaks throughout the system; these may or may not be accompanied by low system pressure, depending on the magnitude of the leak. Several possible problems related to the pump could be sources of increased retention. Air bubbles in the pump will also cause pressure fluctuations; thorough degassing of the mobile phase and purging the pump should correct such problems. If problems persist, check to be sure the frit in the mobile phase reservoir is not restricting flow to the pump. Faulty check valves or pump seals also can result in low flow and long retention times. Sonication of check valves will usually restore their function. Pump seal leakage often is accompanied by liquid dripping from the drain hole just behind the inlet check valve on most pumps. Check the maintenance records — if the pump seal has been in use for a year or more, replace it.

When a change in k values (and often α) is observed, you have evidence that a change in system chemistry is responsible for an increase in retention. The easiest way to check this is to make a new batch of mobile phase. If this does not correct the problem, replace the column.

A final possible source of increased retention is a drop in the column temperature. As mentioned above, a 2% increase in retention for a 1 °C drop in temperature is common. Based on the magnitude of the retention change, you can estimate the temperature change and see if it is a reasonable cause of retention. Has the oven failed, did you forget to turn it on, or are you relying on ambient operating conditions? Any of these sources can account for increased retention.

Retention Is Too Small

When retention times are smaller than they normally appear, a flow-rate change is highly unlikely, unless you made an error in one of the settings. This is because decreases in flow due to leaks or other malfunctions are not uncommon, but there are no corresponding causes that result in higher-than-normal flow rates that are necessary for reduced retention.

As with retention times that are too long, do a stepwise elimination of problem sources by first making up a new batch of mobile phase. If this approach doesn't fix the problem, replace the column. Temperatures that are higher than normal will cause a drop in retention; the sources of temperature problems are the same as for excess retention.

Fluctuating Retention Times

Usually, an increase or decrease in retention will not be an abrupt change. If it is, the cause is likely related to operator intervention, such as improper formulation of a new batch of mobile phase, installing the wrong column, or changing a column-oven setting. More commonly, retention will gradually increase or decrease over tens, hundreds, or thousands of samples, or it cycles over a 24-h period. Cycling retention is commonly correlated with ambient methods and a laboratory temperature that changes throughout the day and night.

Retention drift that occurs over hundreds or perhaps thousands of injections is most likely because of normal column aging. Drift from column aging usually will be accompanied by a gradual increase in pressure and an increase in peak tailing. Often, a shift in relative retention also will be observed when α -values are calculated. If the column is suspected, replace it to see if the problem is corrected.

Shorter-term retention drift may be caused by the mobile phase. Although fairly rare, it is possible to selectively evaporate a volatile component of the mobile phase, especially if helium sparging is used for degassing. Retention drift resulting from a pH shift can occur if the buffer is outside its optimal buffering region, generally ± 1 pH unit from its pK_a . The use of volatile buffers, as is

Leading the Way in HPLC Front Ends for Mass Spectrometry

Delivering Reproducibility, Versatility & Speed for Every Mass Spec Environment

Utilizing patented engineering, the best-in-class

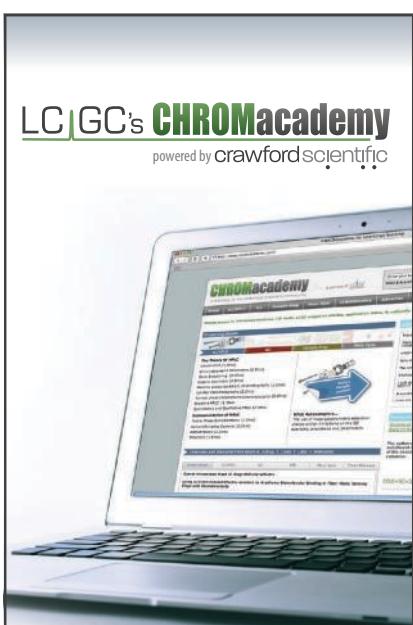
Prominence HPLC/UFLC and Nexera UHPLC

systems generate highly reproducible chromatography while maintaining the flexibility for which Shimadzu HPLC instrumentation is known. Design the perfect system using our modular components or choose a "turnkey" system to get running immediately.

Complete solutions include:

- Automated Sample Prep—serum to purified peptides in <10 minutes
- Nano LC—true nano-flow HPLC with no split flow waste
- Biological Analysis—direct injection of plasma, urine, and other tough matrices
- 2D HPLC—automated on-line Proteomics R&D
- Method Development—walk-up automation and easy method development

Be sure to ask about the new SIL-30ACMP multiplate autosampler, which features an ultrafast injection, near-zero carryover, and continuous analysis of up to 2304 samples.



You have demands. Shimadzu delivers.

Learn more about Shimadzu's HPLC Front Ends. Call (800) 477-1227 or visit us online at
www.ssi.shimadzu.com/FENDS

Order consumables and accessories on-line at <http://store.shimadzu.com>

Shimadzu Scientific Instruments Inc.,
7102 Riverwood Dr., Columbia, MD 21046, USA

LC|GC's CHROMacademy
powered by **crawford scientific**

Troubleshoot problems
before they multiply

Learn the fundamentals
at your own pace

Join at
www.CHROMacademy.com

LCGC's e-learning community
for analytical chemists

View Samples and Enroll
Online Today

Individual, Corporate and
Academic Subscriptions
Available

Featuring a regularly refreshed syllabus:
Self paced modules with assessments
Laboratory tools and application notes
LCGC magazine articles
Web seminars, newsfeeds and more
CHROMmunity for collaboration

www.CHROMacademy.com
The intersection of great science
and practical learning

A service of

common with LC–mass spectrometry (MS) mobile phases, may shorten the stable lifetime of the mobile phase, so daily reformulation may be a wise practice. Make up a new batch of mobile phase if the mobile phase is suspected, and be sure to adjust the pH before any organic solvent is added.

Problem Prevention

To avoid retention problems, make sure to keep the instrument in good operating condition by servicing it regularly. A routine preventive maintenance session should be done on an annual basis at a minimum, and more often for heavily used LC systems.

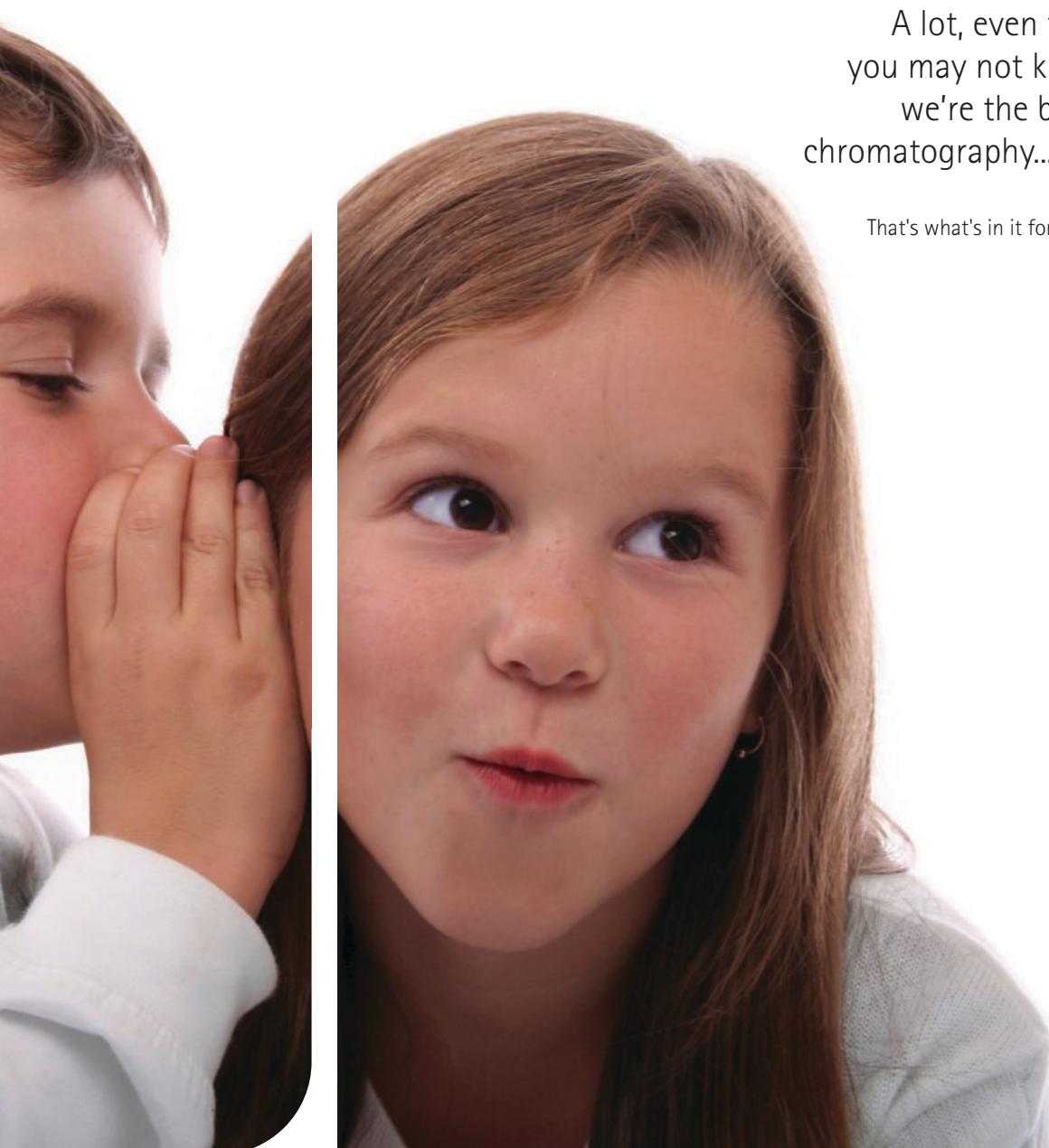
Because column temperature changes can have such a profound influence on retention time, it is wise to always use a column oven. Many ovens do not control the temperature well near room temperature; a good practice is to use a minimum operating temperature of 30–35 °C so that good temperature control is ensured. It may take 30 min or longer for the column oven to reach a stable temperature. Be sure to use the solvent preheater that is included with most column ovens. The most common preheater implementation is a piece of capillary tubing that is embedded in the aluminum block of the oven.

Columns usually will last for more than 1000 injections. When this number of samples has been analyzed, the cost-per-sample for the column is less than 5% of the overall per-sample cost of analysis. My feeling is that at this point it isn't worth my time to do anything more than flush the column with strong solvent (for example, acetonitrile or methanol); if this doesn't restore the column, replace it. Guard columns or sample preparation both will extend the column life, but they have their associated costs, which may make the economics of their use questionable. A 0.5-µm in-line filter between the autosampler and column will help keep particulate matter from blocking the column inlet frit, but it will not influence retention-related problems. Another good practice for extending column life is to use a single column for each method. When the same

column is used for multiple methods, sometimes unimportant sample components from one method will interfere with another method.

Mobile phases have finite lifetimes, too. My recommendation is to replace any buffer at least once a week and organic-based mobile-phase components at least monthly. It is a good idea to replace the reservoir with a clean one whenever the mobile phase is replaced so that prior contamination doesn't get transferred to the new mobile phase.

If you pay close attention to patterns in retention changes, correlations with mobile-phase use, and column history, you can establish expected replacement cycles for each component of each method. After such patterns are defined, you can put in place preventive-maintenance and component-replacement practices that will help you avoid most retention-related problems. Armed with an understanding of which variable most strongly influences retention in your particular method, you'll be able to more quickly identify and correct problems when they occur.

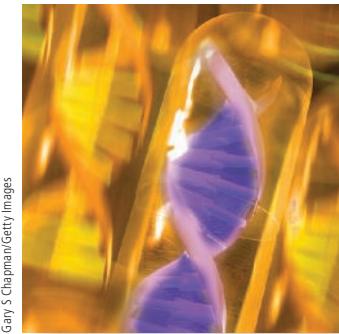

References

- (1) J.W. Dolan, *LCGC* **29**(7), 570–574 (2011).
- (2) J.W. Dolan, *LCGC* **29**(9), 818–824 (2011).

John W. Dolan
"LC Troubleshooting"
Editor John Dolan has been writing "LC Troubleshooting" for LCGC for more than 25 years. One of the industry's most respected professionals, John is currently the Vice President of and a principal instructor for LC Resources in Walnut Creek, California. He is also a member of LCGC's editorial advisory board. Direct correspondence about this column via e-mail to John.Dolan@LCResources.com.

For more information on this topic,
please visit
www.chromatographyonline.com/dolan

The secret's out! Did you know that Merck KGaA, Darmstadt, Germany is EMD Chemicals in North America? No matter what you've called us in the past (E.Merck, EM Science), we've been a pioneer and leader in Chromatography for over one hundred years: our TLC plates were first on the market, our Chromolith® columns introduced a new approach to HPLC, our ZIC®-HILIC


columns have set the standard for melamine analysis and today we are the world's largest producer of Chromatographic Silica. Our name may change, but one thing stays the same--our commitment to innovation, quality and our customers. Visit us at www.emdchemicals.com/chromatography - and feel free to pass it on!

What do you know about chromatography?

A lot, even though
you may not know us yet...
we're the best kept secret in
chromatography...

That's what's in it for you. EMD Chemicals

Gary S Chapman/Getty Images

BIOTECHNOLOGY TODAY

Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans

As mentioned in part I of this series, there are four major applications areas of ultrahigh-pressure liquid chromatography (UHPLC) for biotechnology: peptide mapping, amino acid analysis (AAA), intact protein and antibody analysis, and glycan analysis or glycoprofiling. The first two of these areas were extensively covered in Part I. This installment will emphasize intact protein–antibody analysis and glycan analysis or glycoprofiling and why they are used.

Thomas E. Wheat is a guest coauthor of this month's column. **I.S. Krull** and **A. Rathore** are the editors of *Biotechnology Today*.

In part I of this two-part series on the current usage of ultrahigh-pressure liquid chromatography (UHPLC) in biotechnology, we introduced the fundamentals of performing UHPLC and discussed specific applications for peptide mapping and amino acid analysis (AAA) (1). Readers are encouraged to read part I before part II. There are four major applications areas where UHPLC has become important for biotechnology: peptide mapping, amino acid analysis, intact protein characterization, and glycan analysis or glycoprofiling. These applications are essential analytical challenges in pharmaceutical development, in which UHPLC has proven valuable (2–6). The first two topics were discussed in part I; here, we will focus on the latter two (6,7).

Using much smaller particle diameter packing materials, and shorter or narrower columns, has improved virtually all chromatography for larger proteins or antibodies, as well as for their smaller cousins. Such trends will, of course, continue into the future. When using UHPLC for biotechnology applications, perhaps the very first areas of emphasis have been intact proteins, especially mixtures of protein variants in a drug substance (DS), or antibody variants, isoforms, or glycoforms.

The structure of intact proteins presents a difficult analytical problem because the pharmacological activity of these large molecules is altered by small chemical changes to the protein. The modifications affect a tiny fraction of the chemical properties, so it is necessary to use multiple modes of separation to detect and measure them. The common approaches of reversed-phase

chromatography, size-exclusion chromatography (SEC), and ion-exchange chromatography (IEC) are now available in UHPLC.

The reversed-phase high performance liquid chromatography (HPLC) of intact proteins, especially large molecules such as antibodies, is usually characterized by broad, diffuse, and poorly resolved peaks, with low plate counts and often large asymmetry values. These molecules are the “bad actors” of HPLC because their high molecular weights, slow mass transfer, and low diffusion coefficients lead to large peak volumes. Specific chemical interactions also degrade the analysis through mixed modes of separation (hydrophobic and hydrophilic patches and ionic binding), as well as poor solubility in most HPLC solvents.

When UHPLC materials were being developed for proteins, it was efficient to consider both implementation of small particles with shorter diffusion distances and optimized particle chemistry for reduced chemical interactions. As illustrated in some of the figures in part I, this combination has facilitated using UHPLC for proteins or antibodies. For example, Figure 1 in this installment compares two different columns with the same base particle, bonded phase, and bonding chemistry, operated under identical conditions in two different particle sizes: 3.5 μm and 1.7 μm . It is a controlled comparison between conventional HPLC (3.5- μm particles) and UHPLC (1.7- μm particles). The relative retentions for all of the peaks are the same in the two chromatograms, but more resolution is apparent with the smaller particles. The sample consists of light chains

GC Excellence, Plus

Shimadzu's GC-2010 Plus Out-of-the-Box Speed & Sensitivity

Realize dramatic improvements in productivity with the new **GC-2010 Plus**. Out of the box, it's ready to perform high-speed GC utilizing the latest in ultra narrow-bore capillary columns. The fourth generation Advanced Flow Controller delivers up to 1200 ml/min, 140 psi of pressure and supports split ratios of 9000:1. With fast data collection and rapid cooling, the ultimate in fast GC capabilities has arrived. Combined with world-class sensitivity limits, it's simple: *the new GC-2010 Plus is the clear winner.*

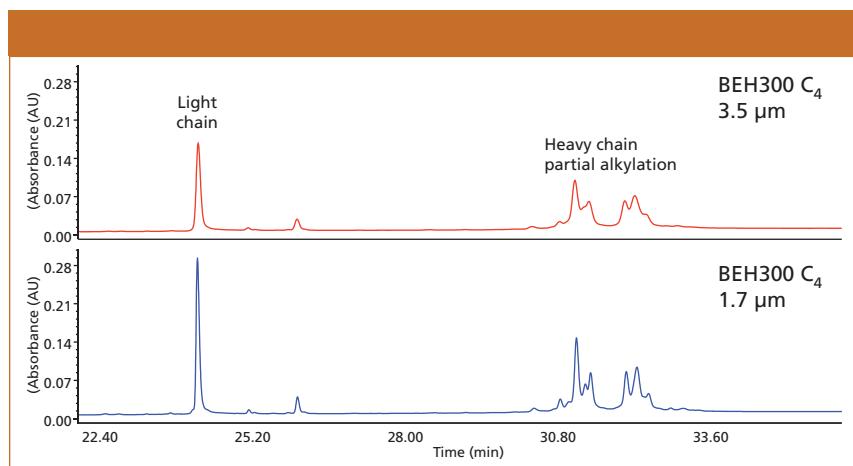
The GC-2010 Plus features:

- ✚ New family of best-in-class detectors – addresses increasing sensitivity demands for trace-level analysis
- ✚ Rapid oven cooling
- ✚ Long-term stability of retention times
- ✚ Excellent precision
- ✚ **Advanced Flow Technology Accessories** – Reduces analysis times, provides enhanced chromatographic resolution, and enables application-specific configurations without compromising performance:
 - Multidimensional GC – delivers enhanced separation power, making it ideal for complex matrices
 - Backflush – shortens run times for improved productivity
 - Detector Splitting – Saves time/money, and enables confident peak identification

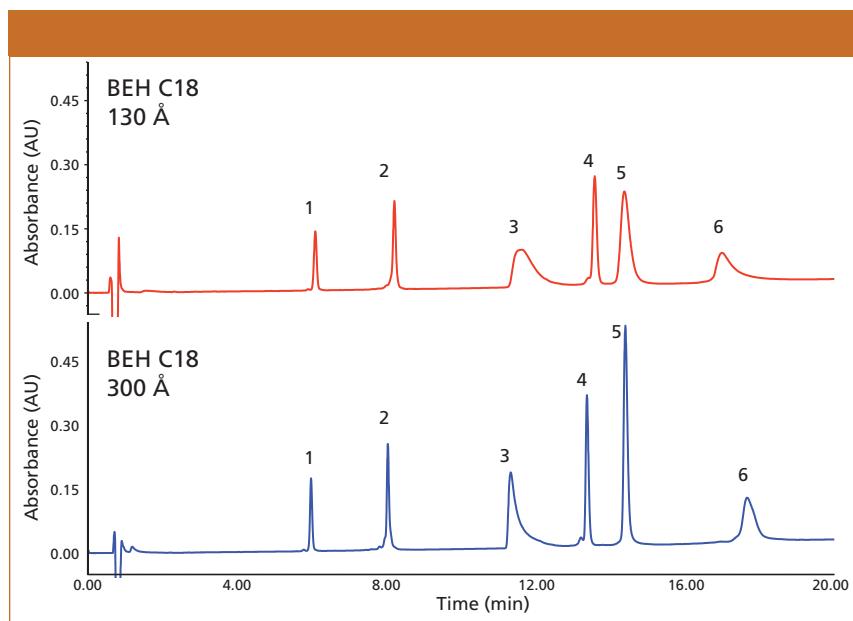
For speed, precision, accuracy, plus... the choice is clear: **the choice is Shimadzu's GC-2010 Plus.**

You have demands. Shimadzu delivers.

Learn more about Shimadzu's products.


Call (800) 477-1227 or visit us online at

www.ssi.shimadzu.com/GCPLUS


Order consumables and accessories on-line at <http://store.shimadzu.com>

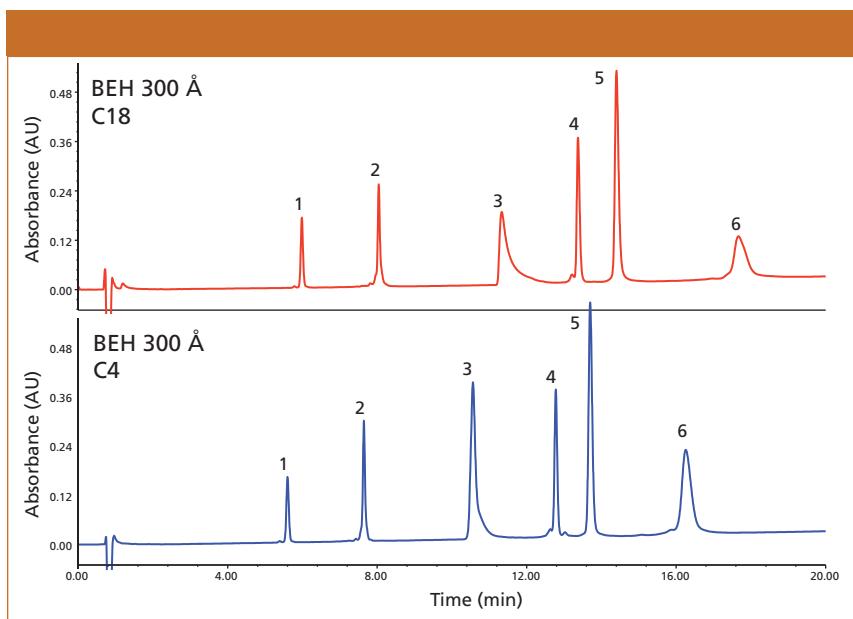
Shimadzu Scientific Instruments Inc., 7102 Riverwood Dr., Columbia, MD 21046, USA

GC-2010 Plus

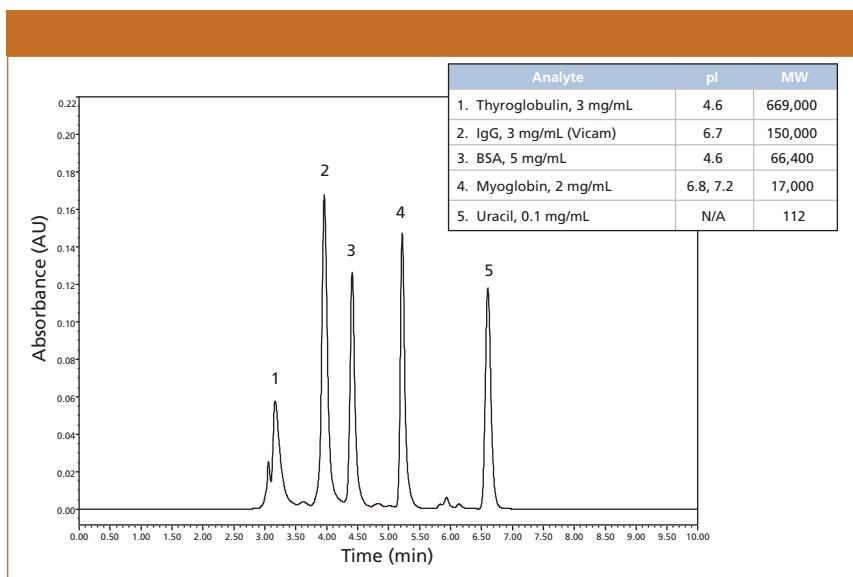
Figure 1: UHPLC separation of light and heavy chains of a reduced and partially alkylated monoclonal antibody (IgG). (Reprinted with permission from reference 8.)

Figure 2: In reversed-phase UHPLC, there is an effect of pore size on resolution and peak shapes possible for a typical mixture of proteins, as indicated. Peaks: 1 = ribonuclease, 2 = cytochrome c, 3 = bovine serum albumin (BSA), 4 = β -lactoglobulin, 5 = enolase, 6 = phosphorylase b. (Reprinted with permission from reference 8.)

(LC) and heavy chains (HC) of an antibody (immunoglobulin, or IgG) with the heavy chains having different degrees of glycosylation or modifications (post-translational modifications, or PTMs). In addition, the sample was reduced and intentionally alkylated only partially to further increase the sample heterogeneity as a test of chromatographic resolving power. The improved resolution with the UHPLC packing material and instrumentation is apparent. It also should be noted that the run time could be reduced by using different dimensions of the columns. Thus, the area of intact


proteins remains one of the four most important applications of UHPLC in use today. It will surely remain so in the future.

Intact protein profiling via UHPLC serves several functions in regulatory submittals. It provides a chromatographic profile of the number of variants present and their relative ratios (percent peak areas), and it helps to define lot-to-lot variations among different production batches. It is important that each peak in such a DS profile be uniform, homogeneous, and a single variant, if possible. Such intact protein profiling then defines a “typical” pro-


duction batch, as well as batch-to-batch variations and their limitations. It also is a very important and reliable application for comparing biosimilars and proprietary drug substances.

The other major application area we will emphasize in this installment is glycan analysis or glycoprofiling. The sugars that are attached to proteins have profound effects on the biological properties of proteins, including binding specificity, stability, affinity, and potential immunogenicity. The analysis of oligosaccharides derived from glycoproteins or antibodies is, therefore, a fundamental required characterization test. The biosynthesis of pharmaceutical proteins yields a mixture of proteins with the same amino acid sequence, but with variable glycans attached. Because the vast majority of biotechnology-derived DSs today contain glycoforms as the variants, it has become *de rigueur* for any regulatory submittal to define the nature of glycans found in the preparation of glycoproteins. This characterization includes determining the distribution of all the glycans found in the sample, the proportions of each protein glycoform, and the location or position of attachment of the glycan to specific amino acids in the protein backbone. The proportion of the glycoforms is most often measured using intact-protein liquid chromatography–mass spectrometry (LC–MS), and points of attachment are characterized as part of peptide mapping, as discussed in part I of this column. *Glycan analysis* or *glycoprofiling* really refers to describing all the oligosaccharides or monosaccharides (if any) that are found on a total mixture of glycoproteins, as well as their relative or absolute amounts.

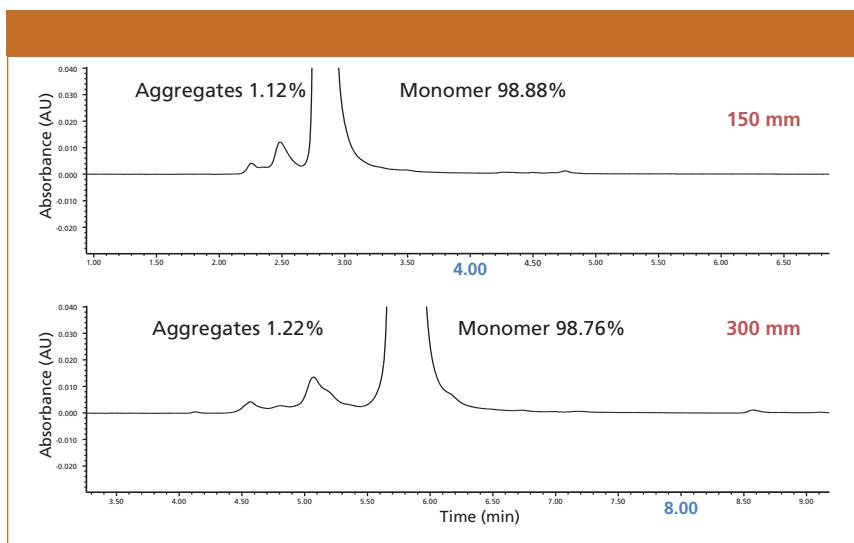
Each oligosaccharide must be structurally defined or sequenced, often versus authentic reference standards, and chromatograms must be provided in a submittal that shows the glyco-profile of the glycoproteins versus authentic reference standards of the glycans found. A glycan is an oligosaccharide, often composed of different monosaccharides and exhibiting extensive branching. These PTMs can be N-linked or O-linked, depending on the protein and on the cell system used for synthesis. A recombinant protein to

Figure 3: Effect of varying bonded phase chain length in reversed-phase UHPLC separation of a mixture of standard proteins, as indicated. Peaks: 1 = ribonuclease, 2 = cytochrome c, 3 = BSA, 4 = β -lactoglobulin, 5 = enolase, 6 = phosphorylase b. (Reprinted with permission from reference 8.)

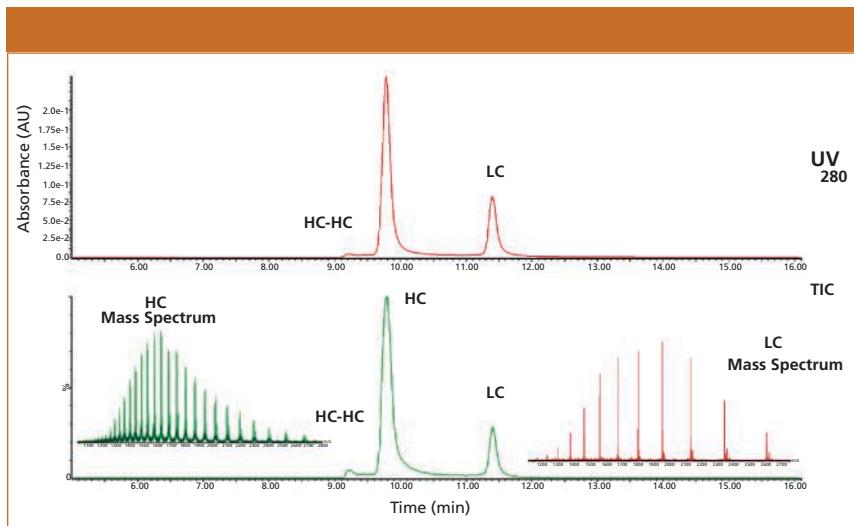
Figure 4: Size-exclusion chromatography of standard proteins in UHPLC. (Reprinted with permission from reference 8.)

be used as a biotherapeutic will always be a mixture of glycoforms reflecting the heterogeneity of the attached glycans. For analysis, the sugars are released by chemical or enzymatic methods. The released glycans are then qualitatively and quantitatively analyzed. There are numerous methods now available for glycoprofiling, but two have become more popular than others. The two popular, or common, techniques are high performance anion-exchange chromatography

with pulsed amperometric detection (HPAEC-PAD) and hydrophilic liquid interaction chromatography (HILIC) with fluorescence detection of derivatized sugars. Often, these and other techniques are applied to initially derivatized glycans.


As with intact protein profiling, glycoprofiling serves several functions in regulatory submittals. It defines the nature of the glycan pool that is present, as another way to structurally define the mixture of glycoproteins or

others. It helps to demonstrate chemical equivalency, lot-to-lot, for release testing, and it can be very useful when comparing biosimilars to innovator glycoprotein DSs or drug products (DPs). It also provides a demonstration that the drug production process is within certain tolerance limits of variabilities. If the glycoprofiling finds a certain mixture of glycans present, then these also must be found on one or more of the glycoproteins in the DS. It is often possible to define the exact amino acid sequence, as well as glycan and glycan locations on every variant in a glycoprotein DS. These must agree, batch-to-batch, or else something is amiss in the production process.


Intact Protein Analysis

As mentioned in part I and above, there are serious challenges for successful protein separations. In general, reversed-phase HPLC applications have been less than ideal, in terms of final peak shapes, efficiencies, resolutions, and peak capacities. Success requires the detection of small chemical differences, often between quite large molecules (molecular weight, size, and shape). Successful UHPLC now employs a variety of analytical techniques that are sensitive to different properties of the proteins (hydrophobic, hydrophilic, ion exchange, hydrogen bonding, and others). Currently, the most popular techniques are IEC for changes in net charges of the proteins (salt or pH gradients are popular); SEC for changes in size or aggregation; and reversed-phase chromatography for detecting a wide range of small changes in the proteins. Success in each of these modes depends on choosing the ideal packing material, particle size, pore size, length of ligand (C18 versus C4), mobile phase, gradients, flow rates, temperature, and other variables available in UHPLC. In developing reversed-phase UHPLC protein separations, it was not sufficient to just use sub-2- μ m particles. It also was necessary to re-examine the properties of the base particle, the pore size, the bonded phase, and the bonding chemistry (9–11).

Figure 2 illustrates the chromatographic differences as a consequence of

Figure 5: Size-exclusion UHPLC of antibody aggregates, as a function of column length. (Reprinted with permission from reference 8.)

Figure 6: Size-exclusion chromatography-UV-MS analysis of a reduced and alkylated monoclonal antibody, showing both UV and MS (total ion chromatogram) chromatograms and mass spectra for both heavy chains and light chains (12).

pore size in the packing material for the same mixture of proteins and mobile phase conditions (8). The larger pore size leads to improved peak shapes and narrower peaks, with minimal effect on selectivity. However, some proteins still do not give the sharp symmetrical peaks expected for UHPLC. For example, peak 3 in Figure 2 is bovine serum albumin (BSA), for which the separation includes several variants that are coeluted under this one, broadened peak. This is not a characteristic of the UHPLC conditions, but rather a reflection of the limitations of reversed-phase mechanisms to discriminate among small chemical changes on a very large

molecule. However, larger pore sizes generally allow the proteins to diffuse more freely and rapidly in and out of the pores, where the majority of the interactions with the bonded phase occur. Differences in distribution coefficients and mass transfer of the proteins can thereby effect overall improved peak shapes and improved separations. It is really a matter of the proteins being able to approach equilibrium interaction with the surface ligands of the bonded phase. Unfortunately, it is not possible to suggest a molecular weight limit in which the separation must be done on 300-Å pore packings. The protein assumes a three-dimensional structure

that is usually larger than the native protein (but different for every protein sequence) because of the disordering of the protein structure at low pH in relatively high concentrations of organic solvents.

A similar set of experiments examined the effect of varying the bonded phase chain length (C18 versus C4), again in reversed-phase-UHPLC, on the peak shapes for a mixture of standard proteins (Figure 3) (8). In this particular illustration, all peak shapes, peak narrowness (asymmetry factor), peak heights, resolutions, and plate counts are improved by going to the smaller C4 chain length (all other particle and mobile-phase conditions were identical). With large proteins, their interactions with very hydrophobic ligands, such as C18, lead to slower mass transfer, stronger hydrophobic-hydrophobic interactions with the proteins, and thus peak tailing, loss of peak shape, and loss of efficiency, as well as overall decreased resolutions. With much smaller peptides, C18 is usually the stationary phase of choice, but for larger proteins, C4 or even C3 is preferred for all of the reasons stated earlier. It is important, however, to recognize that there is no obvious cutoff molecular weight whereby analysts should automatically choose the shorter chain bonded phase. As with pore size, this observation is related to the sequence-dependent disordering of protein structures.

An additional operational parameter to consider is that mass transfer is often improved at higher temperatures. The kinetics of equilibrium between the mobile and stationary phase are faster because of a reduced viscosity and resistance to flow, leading to improved mass transfer effects. Recoveries tend to be improved at elevated temperatures. For these reasons, it is often suggested that reversed-phase separations be performed at 70 °C. However, some proteins show worse peak shapes at the higher temperature. The chromatographic behavior of proteins at low pH and with organic solvents reflects a complicated interplay among mass transfer, solubility, and the equilibrium of disordered structures. Good practice seems to favor testing each sample at both low and

LGC Standards provides a range of products and services for use in a range of laboratory settings

With over 170 years of experience in analytical chemistry, LGC is the UK National Measurement Institute for Chemical and Biochemical measurements. This scientific expertise positions LGC Standards perfectly to provide quality management solutions across disciplines.

- **Pharmaceuticals:** the largest catalogue of impurities reference standards available in the market, pharmacopoeial reference materials and custom reference materials
- **Food:** a wide range of high purity standards and matrix reference materials, and Proficiency Testing schemes for quality assurance purposes
- **Environmental:** organic and inorganic contaminant standards, matrix reference materials & proficiency testing schemes

- **Industrial:** reference materials for petroleum, metals, ores and a wide range of other industrial materials.

Register for our regular newsletters and product updates, and check out our product catalogue at:
www.lgcstandards.com

Or contact the Sales Office:
Email: LGCUSA@lgcstandards.com
Telephone: +44 (0)208 943 8480
Fax: +44 (0)208 943 7554

What LGC Standards can do for you

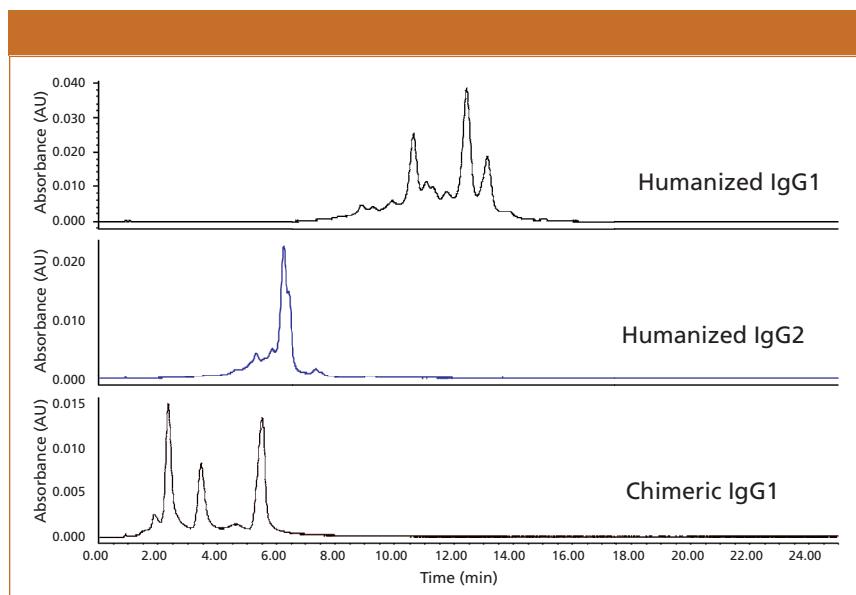
Superior characterisation of pharmaceutical impurities relative to most competitor products:

- exact identification and quantification for correct results
- could eliminate the need for expensive ICH characterisation studies

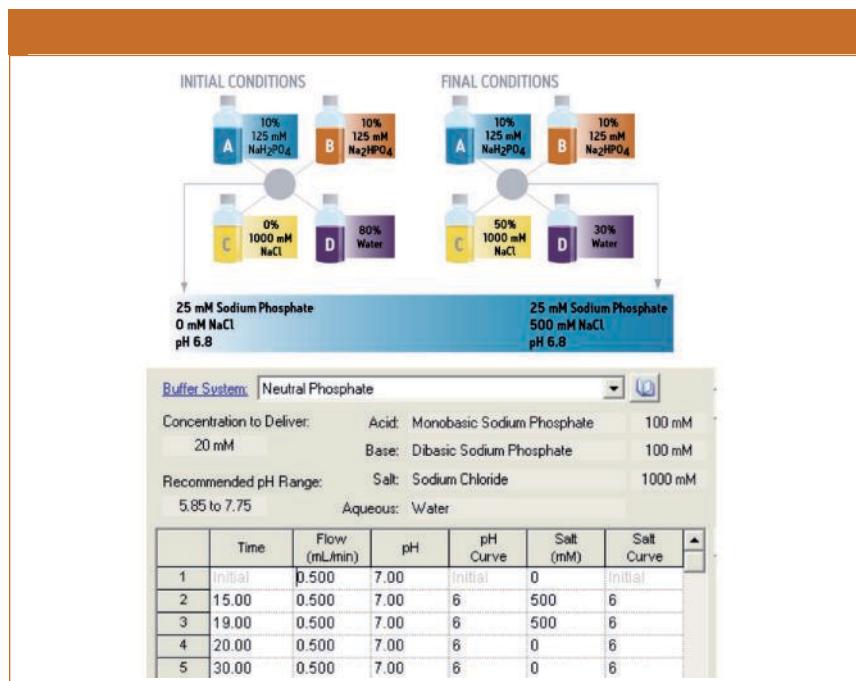
Provide access to the world's largest range of impurity standards and can offer custom materials where required:

- reduces time and cost of sourcing high quality material

Delivers a depth of expertise to the customer:


- LGC has over 20 years of experience in producing impurities standards to the highest levels of quality for the Pharmaceutical industry
- our network of offices provides expert knowledge of local regulations and customs requirements in your market

Dependable supply with short delivery time:


- reduces delays in development and QC release

LGC Standards is the perfect partner to provide solutions for your reference standard needs!

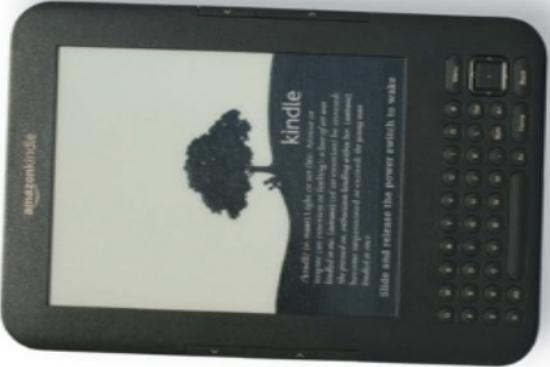
Figure 7: Comparison of three different antibody samples by ion-exchange chromatography using larger particles that mimic superficially porous materials (13).

Figure 8: The use of Auto-Blend Plus software allows programming of a four-solvent pumping system directly in units of pH and salt concentrations in ion-exchange UHPLC of proteins or antibodies (14).

high temperatures, perhaps 45 °C and 75 °C, to identify the range to be used for optimizing the final separations.

Several other operational parameters are of importance in the reversed-phase-UHPLC analysis of proteins. Acidic mobile phase modifiers (formic acid, trifluoroacetic acid, and others) are generally used and higher concentrations of these reagents lead to better peak shapes

and resolutions. Trifluoroacetic acid is preferred for the best peak shape and resolution, and formic acid gives better sensitivity and spectral quality with MS detection.


The effects of flow rate and column length also can be useful and have the expected effects on resolution. In the case of column length, longer columns usually lead to improved or better

resolution of proteins. Lower flow rates improve peak shapes and resolution because the large protein molecules diffuse slowly in and out of the pores. This effect has been underutilized in developing protein separations because the run times increase significantly. It has often been observed, however, that a shorter column at lower flow rates will outperform a longer column at scaled flow rates that give the same run time. Computerized method development software routines, usually commercially available today, can also be useful for systematically optimizing UHPLC conditions (9–11).

SEC has traditionally been a critical tool for the analysis of biopolymers. UHPLC columns for this separation mechanism are just now becoming available. Perhaps the earliest players in biopolymer separations were packings such as Sephadex or Sepharose, polysaccharides, that were used in open-column, low-pressure biopolymer separations on semipreparative and preparative scales. Analytical SEC became popular at least 40 years ago, with the introduction of HPLC columns with hydrophilic coatings or bonded phases on silica particles. More recently, packings have been introduced at the UHPLC scale that are able to withstand high back pressures, higher temperatures, and higher flow rates, and they can resolve proteins, aggregates, antibodies, and fragments in one analysis. Although SEC has traditionally been a low-resolution technique because of the size and slow mass transfer of these analytes (often with extensive band broadening), modern size-exclusion UHPLC gives substantially better resolution in shorter run times. Figure 4 illustrates a typical separation of four proteins, ranging in molecular weight from 17,000 to 669,000 Da, along with a completely included, low-molecular-weight analyte, uracil. The four proteins are all baseline resolved in under 5.50 min, which is considerably less than what has been possible with conventional size-exclusion HPLC, for the very same proteins. Peak shapes are excellent with very low asymmetry factors, high plate counts, and baseline resolution in under 5.50 min. This is truly excellent

Buy a Bundle.
Get a Kindle®!*

The Sigma-Aldrich LC-MS bundle maximizes speed and sensitivity in bioanalysis.

Columns

Sample Prep

Reagents

*Purchase a minimum of \$1500 in one order, in any combination of our LC-MS bundle and receive a Kindle® Wi-Fi, 6" Ink Pearl Display. Details on reverse.

The Sigma-Aldrich LC-MS Bundle includes:

Columns

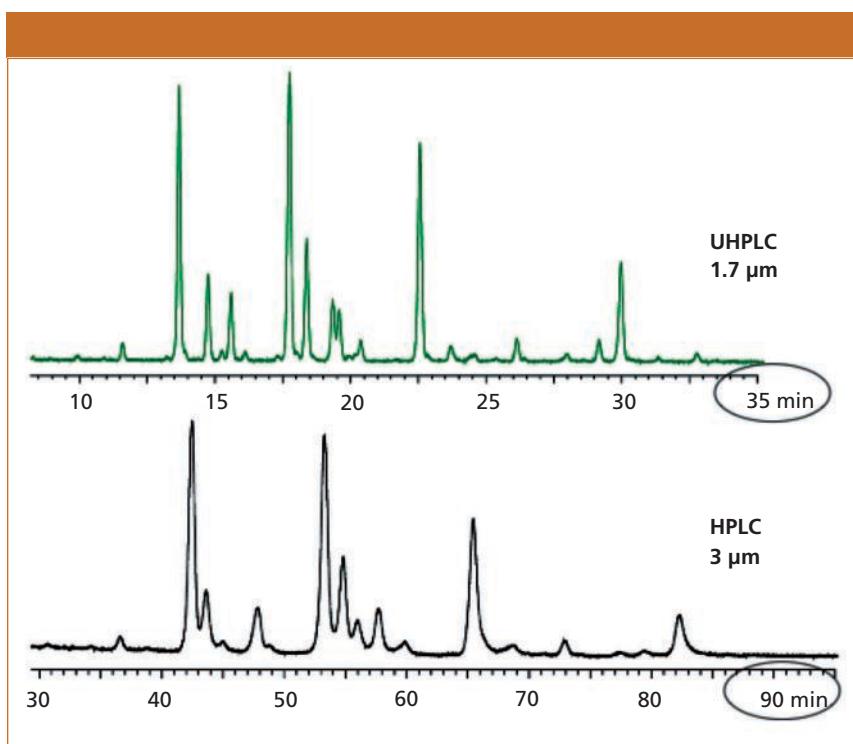
Ascentis® Express Fused-Core® HPLC Columns for fast and sensitive HPLC

Sample Prep

HybridSPE®-Phospholipid 96-Well Plates for complete phospholipid removal

Supel™-Select HLB, SCX and SAX SPE Tubes for ultra-clean sample prep

Reagents


LC-MS CHROMASOLV® High-purity Solvents and Blends for sensitive, trouble-free operation

Offer details:

1. Call 1-800-325-3010 to place your order. Reference Promotion Code 483.
2. Void where prohibited by company policy. (\$150 discount can be substituted in place of Kindle).
3. Valid in the US and Canada only.
4. Limit one offer per customer.
5. Offer valid through January 31, 2012.

Visit sigma-aldrich.com/bioanalysis for detailed part numbers and ordering information on the applicable products.

©2011 Sigma-Aldrich Co. All rights reserved. SIGMA-ALDRICH, SUPELCO, Ascentis, HybridSPE, and CHROMASOLV are registered trademarks of Sigma-Aldrich Co LLC. Kindle is a registered trademark of Amazon.com, Inc. or its affiliates. Amazon.com is not a participant or sponsor of this promotion.

Figure 9: Comparison of a conventional 3-μm HPLC column with a 1.7-μm UHPLC column for the analysis of 2-AB labeled glycans from human IgG. Column: Waters BEH glycan (HILIC). (Reprinted with permission from reference 21.)

size-exclusion UHPLC, perhaps the very best ever demonstrated and far superior to conventional size-exclusion HPLC.

SEC has become a very important technique in biotechnology, in part, because it is able to resolve high-molecular-weight aggregates of proteins and especially of antibodies (see Figure 5). Aggregates (also termed associates), in general, are noncovalent clusters of a monomer, which are usually formed in equilibrium with the monomer as a function of temperature, time, solvent conditions, and even pressure. Figure 5 illustrates the ability of modern size-exclusion UHPLC to resolve fully to the baseline all aggregates present, even at 1.12–1.22% composition versus the monomer. These are almost all baseline resolved. Aggregates can be dimers, trimers, and higher order species of the monomer, or mixed aggregates with various combinations of heavy and light chains (IgG) present. These are usually considered impurities of the DS, often being immunogenic. Regulatory agencies want to know how many and how much of these aggregates are present in the final DP and if they are immunogenic in humans.

They also can ask to have such aggregates removed before the DP can go to market (12).

For characterization of the peaks observed in SEC, both multiple angle light scattering (MALS) and MS, readily interfaced with UHPLC, can provide molecular weight information (15). When considering the use of information-rich detectors with SEC, it is important to remember that the technique measures the size and shape of a protein in solution. It has the great advantage that the separation can be conducted under the conditions where the native, biologically active structure is maintained. However, those separation conditions may be inconsistent with the best performance of the detector. And, of course, the optimal conditions for detection may disturb the protein's structure. This is particularly relevant for MS detection, which performs best in a volatile mobile phase at low pH with relatively high concentrations of organic solvent. SEC can be performed under these conditions, but the observed elution volume will no longer reflect the structure of the protein as it existed in its native, biologically active state.

Despite this, there is value in SEC-MS. As shown in Figure 6, the SEC separation of a reduced and alkylated monoclonal antibody can be executed in a mobile phase that is optimal for electrospray ionization (ESI) (12). The heavy chain, light chain, covalent dimers, and clips are conveniently separated, and the mass of each is measured. This analysis is very useful for high-throughput assays such as reaction monitoring or fraction screening. There is no requirement for gradient re-equilibration and no need to develop methods for specific samples in this approach. Although SEC-MS is not a direct path to characterizing structural variants, it is still a source of valuable information about the protein sample (12).

The fundamental question in biopharmaceutical analysis is the composition of the original sample, with respect to protein three-dimensional structure, and especially aggregation. Several approaches to this problem, alone or in conjunction with SEC, are available. Perhaps in a future “Biotechnology Today” column we will discuss at greater length the advantages of using MALS, SEC-MALS, analytical ultracentrifugation, and field-flow fractionation for both protein monomer and aggregate studies.

IEC is the third significant chromatographic separation mode applied to biopharmaceutical characterizations. To date, true UHPLC packing materials suitable for protein separations have not become commercially available. New materials, however, have been introduced by several manufacturers that give higher resolution chromatography than was available even a few years ago. These materials represent recent advances in surface chemistry that maximize protein selectivity and minimize secondary interactions. These materials also exhibit the reduced band-broadening characteristic of UHPLC on sub-2-μm particles. But all of the materials use large particles that mimic superficially porous materials by one of several, proprietary mechanisms. These modern packings do offer improved resolution of complex protein samples, as shown in Figure 7 (13).

Table I: Advantages of UHPLC for biopharmaceutical analysis

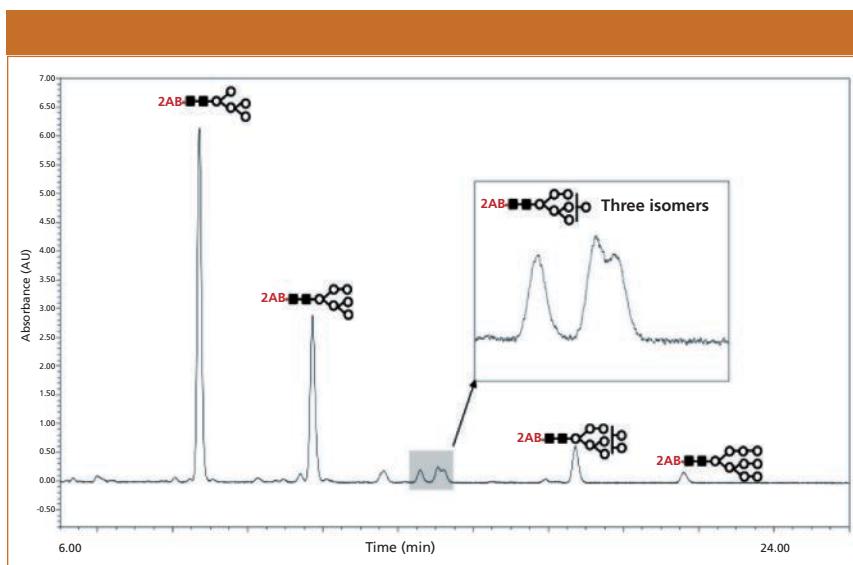
Improved molecular diffusion and mass transfer
Improved peak efficiencies (<i>N</i>) and plate counts
Lower HETP values
Sharper and narrower peaks, narrower bandwidths
Improved peak symmetry values
More symmetrical peak shapes
Greater peak capacity
Improved baseline peak resolutions
Faster sample throughput
Shorter analysis times
Greater productivity (number of samples per hour)
Shorter retention times
Reduced solvent and sample usage
Reduced instrumentation time per sample
Reduced analysis costs per sample
Ability to perform faster and improved separations in all types of chromatographic separations — SEC, IEC, reversed-phase chromatography, HILIC, and others

It also is interesting to observe that IEC analysis of proteins has benefited from the recent developments in instrument design and control that began as refinements to meet the requirements of UHPLC separation mechanisms. Dispersion in the sample fluid path was minimized and more exact control of mobile-phase delivery was established. This has been extended to method programming tools that are specific to protein chromatography today. Because protein separations are most effectively adjusted by optimizing pH and ionic strength, it proved useful to develop algorithms (Auto-Blend Plus Technology, Waters Corporation, Milford, Massachusetts) that allow programming of four solvent pumping systems, directly in units of pH and salt concentration, as shown in Figure 8 (14).

We have now considered three ways to analyze proteins. Each is based on different properties of the molecules, so all are employed to help ensure complete characterization of the different kinds of variation that can occur in protein structures. Now, let's move on to describe the analysis of one of the most important kinds of PTMs of biopharmaceutical proteins today — the attachment of glycans.

Glycoprofiling (Glycan Analysis)

As mentioned above, a key analytical technique that has become required in virtually all regulatory submittals of glycoproteins involves total glycan and monosaccharide analyses. In general, glycoproteins contain glycans, or oligosaccharides (sugars), and usually do not contain attached monosaccharides. Characterization of any glycoprotein requires the determination of the sugars that are present, measurement of their configurations as glycans, determination of the site or sites of attachment on the protein, and finally, the distribution of glycoforms (also known as *variants*, *PTMs*, or *isoforms*) of the protein within the sample.


One of the quality control and characterization methods available today first releases all bound glycans (or just N-linked glycans first), and then digests or hydrolyzes the freed glycans into their monosaccharide constituents. Then, the monosaccharides are monitored by a variety of accepted techniques, including HPAEC-PAD; fluorescence derivatization of monosaccharides followed by HPLC with UV and fluorescence detection; or permethylation followed by gas chromatography-mass spectrometry (GC-MS) analysis of the derivatized sugars (16,17). The

qualitative and quantitative analyses for these monosaccharides then become lot-release and comparative assays to demonstrate consistency of production of the glycoprotein DS. It also serves to confirm the nature of the components in the DS, because any changes in specific glycoprotein components would change the nature of the monosaccharide profiling. Today, monosaccharide analysis is a routinely used method to confirm lot-release consistency for individual glycoproteins or mixtures.

To obtain more-complete information on the biological properties of the glycans, it is necessary to describe how the monosaccharides are assembled into the oligosaccharides on the surface of the protein. This description ultimately specifies the various compositions, sequences, chain lengths, linkages, and branching. This complicated analysis, true glycoprofiling (also known as *glycan analysis*), typically combines several kinds of information for complete characterization. The process begins with release of the N- or O-glycans by either chemical or enzymatic means. All glycans can be released together using base-catalyzed hydrolysis of intact glycoproteins or by hydrazinolysis. For characterizing biopharmaceuticals, N-linked glycans are usually the focus of analysis, and they are commonly released using specific enzymes, particularly PNGase F or G.

There are numerous methods for identifying these released glycans and, then, generating a glycoprofile. These now-routine assay methods are like other chromatographic assays in that the sample in question can often be compared to an authentic standard of pure, characterized glycans at known concentrations. As with all assays, a more elaborate validation process, including multiple kinds of information, supports the standard in use and the identification of the components derived from the glycoproteins. Several separation techniques have by now proven suitable for assaying biopharmaceutical glycoproteins, as explained below.

HPAEC-PAD was the first routine assay method developed several years ago. More recently, techniques involving HPLC and UHPLC or high

Figure 10: UHPLC analysis of 2-AB glycans derived from ribonuclease B glycans. Peak identification was done using UHPLC with electrospray ionization MS detection under the same gradient conditions. (Reprinted with permission from reference 21.)

performance capillary electrophoresis (HPCE) have become common and accepted. There is significant literature describing HPCE of glycans that can be located through the Beckman Coulter (Indianapolis, Indiana) web site (18). Other analytical instrument vendors also offer HPCE instrumentation and applications for glycoprofiling (for example, Agilent Technologies in Santa Clara, California).

However, the prevailing analytical methods invoked by most biotechnology firms involve some form of tagging the released glycans with UV- or fluorescence-active reagents, followed by appropriate UHPLC separations (reversed-phase chromatography, IEC, or HILIC) (19,20). In general, there is a great deal of literature on HPLC methods for providing a glycoprofile, usually with some form of organic tagging before separation and detection (16,17). Perhaps the most common reagent in vogue today is 2-amino-benzamide, or 2-AB. 2-AB and other commonly used reagents are compatible with fluorescence detection for best sensitivity, which is why UHPLC with fluorescence detection is rapidly becoming the standard method for glycoprofiling (Figure 9). Again, UHPLC conditions provide a reduced total elution time compared with conventional HPLC, improved resolution, improved peak symmetry and shapes, higher

peak capacity, and the other attributes indicated in Table I.

There are several ways to identify the individual glycans in a chromatogram, as illustrated in Figure 9. One approach is to inject a known mixture of tagged glycan standards that are expected or known to be found in the specific sample, and then compare elution times and peak shapes. Peak identification can be confirmed by coupling the separation with both UV-fluorescence and ESI-MS detection. The MS system would provide the molecular weight of each 2-AB glycan, from which the parent glycan is readily derived, and this is then compared with the molecular weights of the known, standard glycans. Unequivocal identification of the peaks is not always possible, because many of the biologically significant structural variations have isobaric linkage and positional isomers. However, usually the high-resolution MS fragmentation patterns, especially cross-ring glycan fragmentations, are different for isobaric structural variations and they can be differentiated. Fragmentation patterns using collisionally induced dissociation (CID) or electron transfer dissociation-electron capture dissociation (ETD-ECD) of the intact 2-AB glycans do not always distinguish these isobaric isomers. The MS data can be described as consistent with a proposed glycan structure, but that must be combined

with other analytical determinations to provide absolute confirmation of their structures.

Many techniques are commonly used for complete determination of glycan structure as a part of validating the routine assay. This topic really ranges beyond the scope of this review, but we can briefly mention some of the common choices. One of the most powerful techniques is enzymatic (exoglycosidase) digestion of the tagged glycan, releasing one end-group monosaccharide at a time, and determining the shifts in elution times and molecular weights (with online ESI-MS) for the original glycan. By using a combination of enzymes with different specificity, both the sequence and the linkages can be deduced. Naturally, MS is a convenient and very popular tool for the characterization. It is used in combination with suitable databases and fragmentation patterns of standard, known glycans that are already well derived. Both matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI TOF-MS) with in-source decay (ISD) off-line and HPLC-ESI-MS-MS have by now been well developed to enable sequencing and absolute identification of all known glycans found in natural or recombinant glycoproteins or antibodies. Ultimately, however, the description of the glycan profile is based on a knowledge of the enzymes present in the cell that synthesized the protein, enzymatic digestion, and often isolation of the glycan, followed by MS and nuclear magnetic resonance (NMR) spectroscopy.

UHPLC techniques have brought improved resolution and reliability to the assay of released glycans. As shown in Figure 9, the methods are better than comparable HPLC techniques. It should be noted that this useful assay is based on HILIC rather than reversed-phase chromatography. To achieve this performance, it was not sufficient to just use smaller particles. Rather, a new packing material was synthesized to be compatible with the small particles and higher pressure operation, while having improved selectivity for the important glycans. The percent peak areas or their ratios,

in Figure 9, can then be used to characterize a specific glycoprofile for the released glycans that were first derived. This, then, becomes characteristic of that individual or mixture of glycoproteins and is suitable for lot-to-lot (batch-to-batch) comparisons and demonstration of chemical equivalencies of biosimilars, in part.

Figure 10 illustrates a different mixture of 2-AB glycans, these coming from ribonuclease B protein (21). The open circles and dark squares represent different monosaccharides linked together to yield the glycans indicated. There are any number of other monosaccharides possible in glycans derived from other glycoproteins. Some glycans are biantennary, some are triantennary, and some are higher order, branched chains. The inset figure in Figure 10 illustrates three distinct glycans for the three isomers possible for this triantennary glycan.

There are innumerable arrays of possible glycoprofiles possible for other glycoproteins, mixtures of glycoproteins, mixture of antibodies, fusion proteins, and others. And, each such glycoprofile, as shown in Figures 9 and 10, then becomes unique for that specific glycoprotein or any mixture of other glycoprotein variants. It is not only an issue of qualitative identification of each glycan present on the original DS, but also the relative percent peak areas of each such glycan, that then characterizes the original DS. And, that is what really becomes extremely useful in demonstrating batch-to-batch consistency of production or isolation, as well as showing that the expression system and production purification processes remain constant, lot-to-lot. These same techniques are proving extremely useful in comparing biosimilars with proprietary DS or DP. These are crucial points to make in any submittal to a regulatory agency.

Acknowledgments

We indicate our sincere appreciation to numerous colleagues within Waters Corporation who, over many years, have provided us with copies of journal publications, magazine articles, application notes, poster papers, and related materials dealing with UHPLC applications in biopharmaceuticals. We

are especially indebted for several figures being used in this article, as provided by Tom Wheat and Ken Fountain at Waters, as well as for interesting discussions as we planned the content for these two columns.

References

- (1) I.S. Krull and A. Rathore. *LCGC N. Amer.*, **29**(9), 838–852 (2011).
- (2) G. Walsh, *Biopharmaceuticals: Biochemistry and Biotechnology*, 2nd ed. (Wiley & Sons, Ltd., Chichester, UK, 2003).
- (3) J. Geigert, *The Challenge of CMC Regulatory Compliance for Biopharmaceuticals* (Plenum Publishers, New York, New York, 2004).
- (4) G. Walsh, *Proteins- Biochemistry and Biotechnology* (Wiley & Sons, Ltd., Chichester, UK, 2002).
- (5) *Pharmaceutical Biotechnology, Fundamentals and Applications*, D.J.A. Crommelin, R.D. Sindelar, and B. Meibohm, Eds. (Informa Healthcare, New York, New York, 2008).
- (6) *Application Solutions for Biopharmaceuticals, A Focus on Protein Therapeutics* (Waters Corporation, Milford, Massachusetts, 2009, 2010) www.waters.com.
- (7) *Separation Science Redefined*, www.chromatographyonline.com (2005).
- (8) T. Wheat, *Principles and Practice of UHPLC, UltraPerformance Now More Accessible Than Ever*, Training Course, Waters Corporation, (2010).
- (9) Waters Automated Methods Development Software, available in collaboration with S-Matrix Corporation, Eureka, California.
- (10) Fusion Method Development from S-Matrix, Waters Brochure 720003137en.pdf (2009).
- (11) I. Krull, M. Swartz, J. Turpin, P.H. Lukulay, and R. Versepul, *LCGC N. Amer.*, **26**(12), 1190–1197 (2008).
- (12) Waters Literature WA64266 and 720004076en (SEC), Waters Literature 720004018en (SEC-MS).
- (13) Waters Literature 720003836en (IEC).
- (14) Waters Literature 720003852en (Auto-Blend Plus).
- (15) Wyatt Corporation, Santa Barbara, California, technical literature on MALS detectors for HPLC and SEC. www.wyatt.com.
- (16) *Techniques in Glycobiology*, R.R. Townsend and A.T. Hotchkiss, Eds. (Marcel Dekker, Inc., New York, aka Taylor & Francis, Inc., New York, 1997).
- (17) *A Laboratory Guide to Glycoconjugate Analysis*, P. Jackson and J.T. Gallagher, Eds. (Birkhauser Verlag, Basel, CH, 1997).
- (18) Beckman Coulter, Inc., Brea California, www.beckmancoulter.com,
- (19) J. Ahn, J. Bones, Y.Q. Yu, P.M. Rudd, and M. Gilar, *J. Chromatogr. B* **678**, 403–408 (2010), and references therein.
- (20) B. Gillece-Castro, K. van Tran, J.E. Turner, T.E. Wheat, and D.M. Diehl, “N-linked glycans of glycoproteins: a new column for improved resolution,” Application Note, Waters Corporation (2009), and references therein.
- (21) Innovative Chromatography Technology for Improved Biopharmaceutical Separations, Waters Corporation Seminar, Northeastern University, Boston, Massachusetts, October, 2009.

Thomas E. Wheat

is a principal scientist in the Systems Laboratory at Waters Corporation (Milford, Massachusetts). He earned a Ph.D. in cell biology from the University of Illinois and was a post-doctoral research associate at Northwestern University. He has used and studied protein and peptide chromatography throughout his academic and industrial career.

Anurag S. Rathore

is a biotech CMC consultant and an associate professor with the Department of Chemical Engineering at the Indian Institute of Delhi, India.

Ira S. Krull

is Professor Emeritus of Chemistry and Chemical Biology at Northeastern University, Boston, Massachusetts, and a member of LCGC's editorial advisory board.

For more information on this topic, please visit
www.chromatographyonline.com

Let your work flow.™

Milli-Q® Integral system
pure and ultrapure water at your fingertips.

- Dual POD (point-of-delivery) concept saves space and increases convenience.
- Lower running costs and water waste with exclusive Elix® technology.

Experience More www.millipore.com/ultrapure

EMD Millipore is a division of
Merck KGaA, Darmstadt, Germany

Analysis of Phenazepam in Whole Blood Using Solid-Phase Extraction and LC-Tandem Mass Spectrometry

In this study, a solid-phase extraction (SPE) procedure is described for the analysis of phenazepam in whole blood. Extraction was performed using a mixed-mode SPE column. Samples of whole blood were diluted with aqueous phosphate buffer (pH 6). After loading the diluted sample onto the SPE column, the sorbent was washed with deionized water, acetic acid, and methanol. After drying the SPE columns, the analytes were eluted from the SPE column with 3 mL of an elution solvent consisting of methylene chloride, isopropanol, and ammonium hydroxide. The eluates were collected, evaporated to dryness, and dissolved in mobile phase (100 μ L) for analysis by liquid chromatography–tandem mass spectrometry (LC–MS–MS). Chromatography was performed in gradient mode using a C18 column and a mobile phase consisting of acetonitrile and 0.1% aqueous formic acid. The total run time for each analysis was 5 min. The limits of quantitation and detection for this method were determined to be 1.0 ng/mL and 0.5 ng/mL, respectively. The method was found to be linear from 1.0 ng/mL to 100 ng/mL ($r^2 > 0.995$). Recoveries of the phenazepam were found to be greater than 90%.

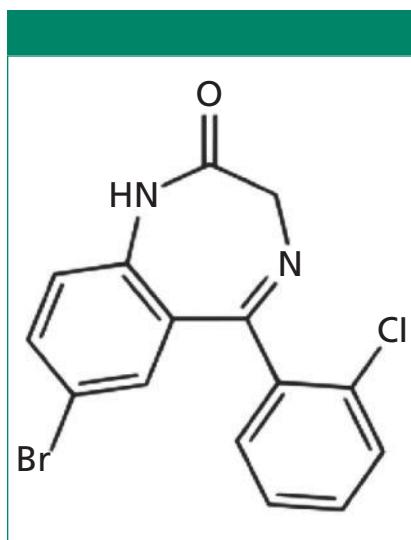
Phenazepam (7-bromo-5-[2-chlorophenyl]-1,3-dihydro- 2H-1,4-benzodiazepin-2-one) (Figure 1) is a benzodiazepine-type drug that was developed in the former Soviet Union and is now produced in Russia and some other countries (1). Phenazepam is used in the treatment of neurological disorders such as epilepsy, alcohol withdrawal, and insomnia (2), but it is now becoming a drug of interest to the forensic community because of its reported misuse (3). It can be used as a premedication before surgery because it augments the effects of anesthetics and reduces anxiety. Phenazepam is available as a 0.5-mg tablet, and the maximum daily dosage should not exceed 10 mg (2). The possible side effects of using phenazepam include dizziness, loss of coordination, and drowsiness, along with anterograde amnesia that can be quite pronounced in high doses (4). As with other benzodiazepines,

in case of abrupt discontinuation following prolonged use, severe withdrawal symptoms may occur including restlessness, anxiety, insomnia, and convulsions (5). The metabolism of phenazepam in several species of mammals including humans has been known since the 1980s, when it was reported (6) that after oral administration (human) peak blood concentrations of the parent drug were achieved in 4 h and had a half life ($t_{1/2}$) of 60 h. The authors of the study observed that the conversion of phenazepam to the metabolite 3-hydroxyphenazepam is not significant in humans; thus phenazepam is the main analyte of interest for forensic toxicologists because its use and misuse is becoming prevalent (3). Phenazepam has been determined in biological fluids by gas chromatography–mass spectrometry (GC–MS) (7) and GC using nitrogen specific detection (NPD) (8) as well as liquid chromatography–tandem

**Albert A. Elian*,
Jeffery Hackett†, and
Michael J. Telepchak†**

*Massachusetts State Police Crime Laboratory and †UCT Inc.

Direct correspondence to:
jhackett@unitedchem.com


mass spectrometry (LC–MS–MS) (9), following liquid–liquid extraction (LLE).

This article is (to our knowledge) the first report on the continent of North America of phenazepam in a drugs-and-driving case employing mixed-mode solid-phase extraction (SPE) and LC-MS-MS. A recent report has been published in Europe for the analysis of this drug in Finland (10).

Experimental

Chemicals and Reagents

Phenazepam was obtained from Lipomed (Cambridge, Massachusetts) as a 1-mg/mL methanolic solution. The internal standard (diazepam-*d*₅) was purchased from Cerilliant (Round Rock, Texas) as a 100- μ g/mL methanol solution. Acetonitrile, acetic acid (glacial), concentrated ammonium hydroxide solution (32% by volume), formic acid, isopropanol, methanol, and methylene chloride were obtained from Fisher Scientific (Pittsburgh, Pennsylvania). The SPE columns (CSDAU206) were obtained from UCT Inc. (Bristol, Pennsylvania). Deionized (DI) water was laboratory grade and was generated in the Massachusetts State Police Crime Laboratory (MSPCL). The water was produced

Figure 1: The structure of phenazepam.

by passing water through mixed-bed ion-exchange filters followed by ultraviolet light radiation; the resulting deionized water had $18\text{-M}\Omega$ resistance. All chemicals were of ACS grade.

Acetic acid was prepared as a 1.0 M solution by diluting glacial acetic acid (58.0 mL to 500 mL), making it up to 1 L with DI water, and mixing well. Formic acid was prepared as a 0.1% (v/v) solution by adding 1 mL of the acid to 900 mL of DI water and diluting to 1 L. Acetonitrile containing 0.1% formic acid (v/v) was prepared by adding 1 mL of formic acid to 900 mL of acetonitrile and diluting to 1 L. Phosphate buffer (pH 6, 0.1 M) was purchased from Fisher Scientific as a ready-to-use solution.

Chromatographic Analysis

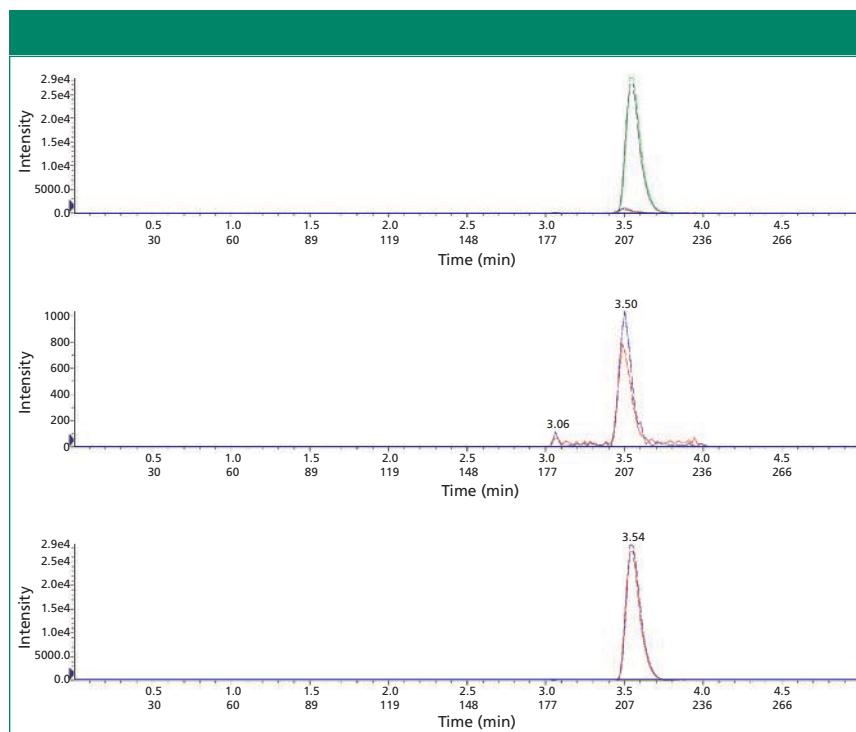
Analysis was performed using an API 3200 Q-Trap instrument supplied by Applied Biosystems (Foster City, California). The chromatographic system consisted of a Shimadzu CBM 20 A controller, two Shimadzu LC 20 AD pumps including a degasser, a Shimadzu SIL 20 AC autosampler, and a Shimadzu CTO AC oven (set at 10 °C) (Shimadzu Scientific Instruments, Columbia, Maryland). The instrument was fitted with a 50 mm × 2 mm, 5 µm Iмtак US-C18 column from Silvertone Sciences (Philadelphia, Pennsylvania), which was attached to a Unison US-C18 guard column (5 mm × 2 mm) obtained from the same supplier. The LC system's column oven was maintained at 40 °C throughout the analyses. The injection volume was 10 µL. The mobile phase consisted of solvent A, DI water containing 0.1% formic acid, and solvent B, acetonitrile containing 0.1% formic acid. The mobile phase was delivered at a flow rate of 0.5 mL/min. The mobile-phase gradient was programmed as follows: 5–90% B in 4.0 min, then the proportion of solvent B was returned to 5.0%. The instrument was ready for reinjection after 5.1 min.

The mass spectrometry was performed on an API 3200 QTRAP system using multiple reaction monitoring mode (MRM). The following transitions were monitored (quantification ions underlined): m/z 350.8 \rightarrow 206.3, 104.4, for phenazepam. The internal standard (diazepam- d_3) was monitored at the following transitions: m/z 290.1 \rightarrow 198.3, 154.3. Tandem mass spectrometry was performed under the following conditions: curtain gas setting, 15; collision gas setting, medium; ion spray voltage setting, 5000 V; temperature setting, 650 °C; ion source gas 1 setting, 50; ion source gas 2 setting, 50. Tandem mass spectrometer conditions are shown in Table I. The analytical data were collected using Analyst Software Version 1.5 supplied by Applied Biosystems.

The retention times for phenazepam and the internal standard (diazepam- d_5) were 3.49 and 3.54 min, respectively (Figure 2).

Sample Preparation for Analysis

Calibrators and Controls


A solution of phenazepam was prepared at a concentration of 1 $\mu\text{g/mL}$ by the dilution of 10 μL of stock solution with acetonitrile to 10 mL in a volumetric flask. A solution of the internal standard (diazepam- d_5) was prepared by diluting 100 μL of the stock solution (100 $\mu\text{g/mL}$) to 10 mL with acetonitrile in a volumetric flask. The choice of internal standard was based on the fact that deuterated analogs of phenazepam are not currently available and that an isotopically labeled analog of a benzodiazepine (which shares structural similarities to phenazepam) would not be observed in a case sample.

Calibrators were prepared by the addition of 0.5, 1.0, 10.0, 50, and 100 ng of phenazepam into 1.0-mL samples of drug-free whole blood. Then, 50 ng of the internal standard was added to these samples. Control samples were prepared by the addition of 4 ng of phenazepam to 1.0

Table I: Tandem mass spectrometry conditions

Compound	Q1	Q3	Time (ms)	DP (volts)	EP (volts)	CXP (volts)	CE (volts)
Phenazepam (1)	350.799	206.3	250	56	10.5	4	49
Phenazepam (2)	350.799	104.1	250	56	10.5	4	83
Diazepam- <i>d</i> ₅ (1)	290.162	198.3	250	56	4.5	4	43
Diazepam- <i>d</i> ₅ (2)	290.162	154.3	250	56	4.5	4	39

Time = dwell time; DP = declustering potential; EP = exit potential; CXP = collision cell exit potential; and CE = collision energy.

Figure 2: Chromatogram of a blood extract containing phenazepam at LOQ (1.0 ng/mL) showing total ion chromatogram (TIC) (upper), phenazepam (middle), and internal standard (lower).

mL samples of drug-free whole blood in addition to 50 ng of the internal standard. A negative control sample was prepared by adding only the internal standard (50 ng) to a sample of drug-free whole blood (1.0 mL). To each of the calibrators, control, and test samples was added 5 mL of pH 6 buffer. These were then well mixed on a vortex mixer (1 min) and centrifuged at 3000 rpm for 10 min before application on individual SPE columns. All determinations were performed in duplicate.

To assess the performance of the procedure, calibration curves were constructed twice daily over five consecutive days using the spiked controls; we obtained intraday and interday values from these data.

Solid-Phase Extraction

Solid-phase extraction columns were conditioned by the sequential addition of 1 × 3 mL of methanol, 1 × 3 mL of DI water, and 1 × 1 mL of 0.1 M phosphate buffer (pH 6). Each liquid was allowed to percolate through the sorbent using gravity without allowing the sorbent to dry out between steps.

Following the passage of the methanol, DI water, and 0.1 M phosphate buffer (pH 6) through the SPE columns, each diluted

sample (that is, calibrator, control, and case item) was loaded on to an individually marked SPE tube, and allowed to pass through the sorbent using gravitational flow. The columns were then washed with 1 × 3 mL of DI water, 1 × 3 mL of 1.0 M acetic acid, and 1 × 3 mL of methanol, respectively. The SPE columns were then dried by applying a vacuum to the SPE manifold at 15 in. of mercury pressure with the aid of an electric vacuum pump connected to the vacuum manifold.

The analytes were eluted from the SPE columns by the addition of 1 × 3 mL of a 78:20:2 methylene chloride-isopropanol–ammonium hydroxide solution. This solution was prepared daily by adding 2 mL of concentrated ammonium hydroxide solution to 20 mL of isopropanol and mixing well. Finally, 78 mL of methylene chloride was added to this solution and the resultant solution was transferred to a clean screw-top glass bottle for use. A screw-top bottle ensures that the basicity of the solution remains high by eliminating any loss of ammonia from the bottle. The elution solvent was allowed to flow through the SPE sorbent with the aid of gravity and was collected in separate glass tubes (75 mm × 125 mm). Glass tubes were chosen because

they are standard laboratory materials within this toxicology laboratory.

The eluate from each SPE column was evaporated to dryness using a gentle stream of nitrogen at 35 °C, after which the samples were dissolved in 100 µL of a solution consisting of 95% mobile-phase A and 5% mobile-phase B for LC–MS–MS analysis.

Recovery Studies

To determine the recovery values across the dynamic range of the analysis, the results of the SPE extractions of the whole blood extracts (as duplicate analyses) were compared to the values obtained from unextracted standards at corresponding concentrations. The unextracted standards were prepared by evaporation of acetonitrile solutions containing phenazepam (including 50 ng of the internal standard). The dried residues were dissolved in mobile phase (100 µL) before analysis by LC–MS–MS.

Matrix Effects

Studies into the matrix effects were performed according to procedures described by Matuszewski and colleagues (11). In this process, samples of drug-free whole blood (1 mL) were spiked with phenazepam before analysis using the SPE methodology. A second set of drug-free whole extracts was analyzed according to the SPE method. Following elution from the SPE columns, the extracts were spiked with phenazepam. Both sets of samples were evaporated to dryness under a gentle stream of nitrogen at 35 °C, and the residues were dissolved in 100 µL of a solution consisting of 95% mobile-phase A and 5% mobile-phase B, the samples were combined for analysis by LC–MS–MS.

Phenazepam solutions (each with a concentration of 50 ng/mL) were infused into the tandem mass spectrometer using the on-board syringe pump (controlled by Analyst 1.5 software) via a 1-mL Hamilton syringe (model 1001TLL, supplied by Fisher Scientific) at a flow rate of 5 µL/min. At the same time as the phenazepam solution was flowing into the mass spectrometer, a 10-µL aliquot of the SPE-extracted whole blood matrix (drug-free blood, free of phenazepam) was injected using the autosampler syringe on the Shimadzu liquid chromatograph using Analyst 1.5 software. The liquid

Unlock the Latest Trends in Automated Qualification

LIVE WEBCAST: Tuesday, November 29, 2011 at 2:00 PM EST

Register free at <http://chromatographyonline.com/trends>

EVENT OVERVIEW:

Join us for a free 60-minute webinar that will change the way you look at qualification and compliance. Look at industry trends that are moving from paper-based to computer based qualification. Discover how an innovative, harmonized, cross-platform approach can simplify the entire process while ensuring:

- Simpler audits and reviews
- Faster report generation
- Minimized instrument downtime
- Total data traceability
- Complete regulatory confidence
- Enhanced security

The presentation will focus on the current regulatory guidelines and industry trends related to switching from traditional paper instrument qualifications to semi- or fully automated electronic qualifications. There are many key areas that need to be considered before making this change, and each area will be discussed in detail to ensure a full understanding of the impact this change will have on your laboratory. The benefits that can be derived from making the change to an automated electronic qualification will be discussed as well.

Presented by

Sponsored by

Key Learning Objectives:

1. Stay current with industry trends
2. Understand different options that are available
3. Learn about Automated Qualifications

Who Should Attend:

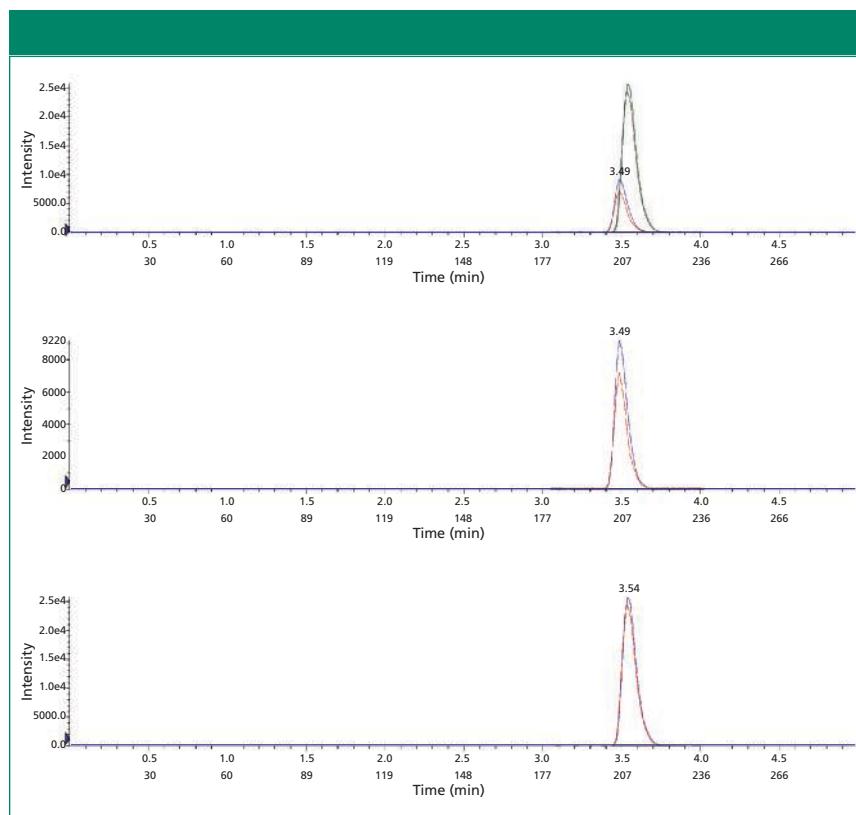
- Lab Managers
- Quality Managers
- Lab Personnel responsible for qualification

Presenter:

Jim Willis

Director of Americas Validation and Compliance Services

PerkinElmer


Moderator:

Meg Evans

Managing Editor

LCGC North America

For questions contact Jamie Carpenter at jcarpenter@advanstar.com

Figure 3: Chromatogram of an actual blood extract containing phenazepam showing total ion chromatogram (TIC) (upper), phenazepam (middle), and internal standard (lower).

chromatograph and mass spectrometer were arranged so that samples from the liquid chromatograph were mixed into the flow of phenazepam via a three-port T-section before the total flow entered the mass spectrometer. Any suppression effects on the phenazepam could be monitored at the MRMSs for the noted drugs.

Selectivity

When analyzing samples of biofluids such as blood via SPE and LC-MS-MS, it is essential to ensure that the interfering effects of other drug compounds can be eliminated. In this procedure, samples of drug-free whole blood (1 mL) were spiked with 49 drugs at a concentration of 100 ng/mL (bupropion, lidocaine, methadone, amitriptyline, nortriptyline, thioridazine, trazodone, mesoridazine, pethidine, diphenhydramine, phenyltoloxamine, imipramine, desipramine, benztrapine, trimethoprim, diltiazem, haloperidol, strychnine, morphine, codeine, 6-acetylmorphine, oxycodone, oxymorphone, hydrocodone, noroxycodone, hydromorphone, diazepam, nordiazepam, oxazepam, temazepam,

alprazolam, α -hydroxyalprazolam, lorazepam, triazolam, α -hydroxytriazolam, flunitrazepam, 7-amino-flunitrazepam, chlordiazepoxide, midazolam, α -hydroxymidazolam, flurazepam, desalkyl-flurazepam, cocaine, ecgonine methyl ester, ecgonine ethyl ester, benzoyl-ecgonine, cocaethylene, clonazepam, and 7-amino-clonazepam) and were extracted according to the SPE method. The interfering effect of these compounds was not found to be significant.

Results and Discussion

Recovery

The recovery of phenazepam from drug-free whole blood was 98% ($\pm 2\%$). This result is an excellent indicator for the efficiency of the extraction procedure of phenazepam using whole blood as a matrix. The procedure was performed twice daily during a period of five days.

Imprecision of Analysis

The spiked control samples (4 ng/mL) were determined to have concentrations of 3.9 ng/mL (± 0.2 ng/mL). This value was determined during a period of five days.

Intraday variation and interday variation for the analysis of phenazepam were found to be less than 5% and less than 8%, respectively. Ion suppression studies revealed that suppression of monitored ions was less than 2%. This method was found to be linear ($r^2 > 0.995$) throughout the 1.0–100 ng/mL dynamic range for phenazepam.

LOD and LOQ

The *limit of detection* (LOD) of a particular method can be defined as the level at which the signal-to-noise ratio for the particular analyte is greater than or equal to 3:1. The *limit of quantification* (LOQ) for the method is the level at which the signal-to-noise ratio for a particular analyte is greater than or equal to 10:1. In this study, LOD values were determined empirically by analyzing extracted samples of drug-free whole blood fortified with phenazepam by LC-MS-MS according to the SPE method. This analysis was performed until the lowest level at which each of the respective analytes just failed the signal-to-noise ratio of 3:1. This was observed to be 0.5 ng/mL. In terms of LOQ, samples of drug-free blood were spiked with phenazepam at concentrations below 10 ng/mL and extracted according to the SPE procedure until the analytes just failed a signal-to-noise ratio of 10:1; this value was found to be 1.0 ng/mL.

Solid-Phase Extraction

As noted earlier, phenazepam is a relatively new compound of interest to forensic toxicologists. The use of mixed-mode SPE offers toxicologists in forensic laboratories a very clean sample to analyze. The sample is loaded onto the sorbent as a diluted solution at pH 6, and it is cleaned and concentrated on the SPE column. The use of an ion-exchange moiety allows coextracted materials to rinse off the sorbent while the drug of interest is retained in a clean condition. In this situation, the drug can be eluted using a mid-polarity solvent mixture that is easily evaporated for further analysis. This combination of hydrophobic and ion-exchange chemistries is a powerful tool for producing clean samples for chromatographic analyses.

Tandem Mass Spectrometry

This project was aimed at introducing new methodology to the forensic

community involved in the analysis of phenazepam in biological samples, with selectivity and sensitivity in mind. In other words, the ability to detect, confirm, and quantify a compound such as phenazepam in a complex mixture at low levels is a highly desired quality in a new procedure, especially if it can lead to a fast turnaround time and an increase in laboratory efficiency.

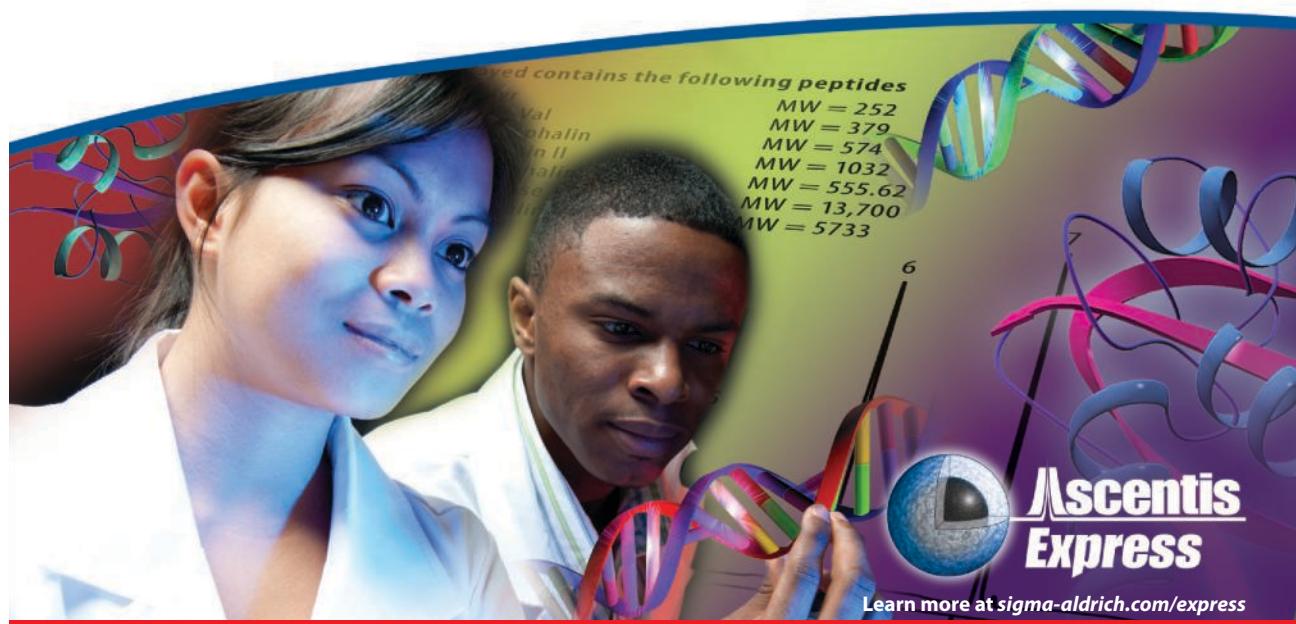
Conclusion

Phenazepam is quickly becoming a drug of interest in forensic laboratories in the United States, the United Kingdom, and Europe (3,12), and analysts will be asked to test for it on a routine basis. With that in mind, this new procedure using SPE and LC-MS-MS will offer forensic toxicology laboratories the ability to perform the analysis of phenazepam in biological fluids, such as blood, quickly and efficiently. When this new method was applied to a genuine case sample taken from a driver operating a motor

vehicle, the whole blood sample was found to contain 9 ng/mL of phenazepam (Figure 3).

References

- (1) V.V. Zakusov, *Pharm. Chem. J.* **13**, 1094–1097 (1979).
- (2) R.C. Baselt, *Disposition of Toxic Drugs and Chemicals in Man 8th* (Biomedical Publications, Foster City, California, 8th ed., 2008) p. 1221.
- (3) P.D. Maskell, G.D. Paoli, L.N. Seethohul, and D.J. Pounder, *B.M.J.* **343**, d4207 (2011).
- (4) T.A. Vorinina and T.L. Garibova, *Bull. Exp. Biol. Med.* **95**, 65–68 (1983).
- (5) V.P. Zherdev, T.A. Voronina, T.L. Garibova, G.B. Kolyvanov, A.A. Litvin, A.K. Sariev, V.N. Tokhmakhchi, and A.E. Vasil'ev, *Eksp Klin Farmakol.* **66**, 50–53 (2003).
- (6) V.P. Zherdev, S. Caccia, S. Garattini, and A.L. Ekonomov, *Eur. J. Drug Metab. Pharmacokinet.* **7**, 191–196 (1982).
- (7) I. Rasenен, M. Neuvonen, I. Ojanpera, and E. Vuori, *Forensic Sci. Int.* **112**, 191–200 (2000).
- (8) W. Johnson, *Toxtalk.* **34**, 17–18 (2010).
- (9) K. Bailey, L. Richards-Waugh, D. Clay, M. Gebhardt, H. Mamoud, and J.C. Kraner, *J. Anal. Toxicol.* **34**, 527–32 (2010).
- (10) L. Wilhelm, S. Jenckel, P. Kriikku, J. Rintatalo, J. Hukke, and J. Kramer, *Toxicol. Krimtech.* **78**, 302–305 (2011).
- (11) B.K. Matuszewski, M. Constanzer, and C.M. Chavez-Eng, *Anal. Chem.* **75**, 3019–3030 (2003).
- (12) J. Mrozkowska, E. Vinge, and C. Borna, *Lakartidningen.* **106**, 516–517 (2009).

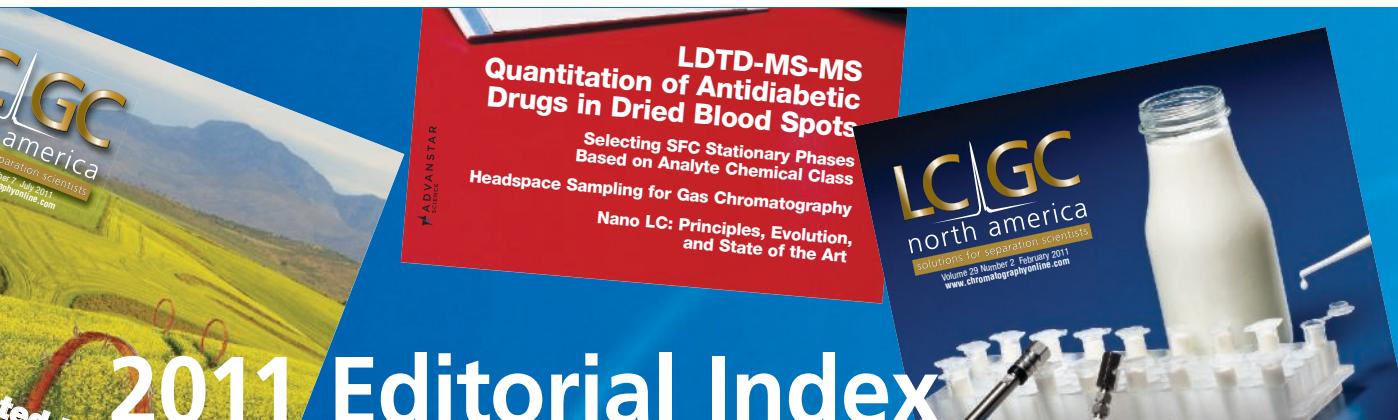

Albert A. Elian is with the Massachusetts State Police Crime Laboratory in Sudbury, Massachusetts.

Jeffery Hackett and **Michael J. Telepchak** are with UCT Inc. in Bristol, Pennsylvania. Direct correspondence to: jhackett@unitedchem.com ■

For more information on this topic,
please visit
www.chromatographyonline.com

High Resolution Peptide Separations with Ascentis® Express Peptide ES-C18

 SUPELCO
Analytical


Identified contains the following peptides

Val	MW = 252
Leu	MW = 379
Ala	MW = 574
Asp	MW = 1032
Asn	MW = 555.62
Leu	MW = 13,700
Asp	MW = 5733

6

Ascentis
Express

Learn more at sigma-aldrich.com/express

2011 Editorial Index

AUTHORS

A

Abdel-Rehim, Mohamed. On-Line Whole Blood Analysis Using Microextraction by Packed Sorbent and LC-MS-MS. July, p. 612.

Aboul-Enein, Hassan Y. See Ali, Imran. Acosta, Tayro E. See Misra, Anupam K. Acworth, Ian. See DeLand, Phillip. Al-Othman, Zeid A. See Ali, Imran. Ali, Imran; Al-Othman, Zeid A.; Aboul-Enein, Hassan Y.; Saleem, Kishwar; and Hussain, Iqbal. Fast Analysis of Third-Generation Cephalosporins in Human Plasma by SPE and HPLC Methods. *Recent Developments in HPLC/UHPLC*, April, p. 18.

Alonso, David E.; Binkley, Joe; and Siek, Kevin. Comprehensive Analysis of Persistent Organic Pollutants in Complex Matrices Using GC with High-Performance TOF-MS. *Current Trends in Mass Spectrometry*, July, p. 48.

Alpert, Andrew; and Heckendorf, Amos. Electrostatic Repulsion-Hydrophilic Interaction Chromatography: Using One Mode to Tune Retention from a Second Mode. July, p. 606.

Andrade, Lawrence; Grenier, Adam; Awad, Amber; and Pekol, Teresa. Validation of LC-MS-MS Methods for the Determination of Ibuprofen in Miniature Swine Plasma and Synovial Fluid. *Recent Developments in HPLC/UHPLC*, April, p. 10.

Archer-Hartmann, Stephanie A.; and Holland, Lisa A. "Self-Assembled Nanomaterials for Enhanced Chemical Separations," in Column Watch. May, p. 384.

Artaev, Viatcheslav. See Patrick, Jeffrey S. Asara, John M. Mass Spectrometry Advances Fossilomics. *Current Trends in Mass Spectrometry*, March, p. 18.

Awad, Amber. See Andrade, Lawrence.

B

Balogh, Michael P. "Problem Solving in the Chemical Industry," in MS — The Practical Art. February, p. 144.

Balogh, Michael P. "Testing the Critical Interface: Leachables and Extractables," in MS — The Practical Art. June, p. 492.

Balogh, Michael P.; and Stranz, David. "Visualizing the Chemical Composition of Complex Samples," in MS — The Practical Art. September, p. 826.

Barth, Howard G. See Kempf, Bruce.

Bartsch, G. See Pallua, J.D.

Bates, David E. See Misra, Anupam K.

Baumgartner, C. See Pallua, J.D.

Beesley, Thomas. "The State of the Art in Chiral Capillary Gas Chromatography," in Column Watch. August, p. 642.

Begley, Benjamin; and Koleto, Michael. Single Multipoint Calibration Curve for Discovery Bioanalysis. *Current Trends in Mass Spectrometry*, May, p. 8.

Bhambure, Rahul. See Rathore, Anurag S.

Binkley, Joe. See Alonso, David E.

Binkley, Joe. See Patrick, Jeffrey S.

Bittner, L.K. See Pallua, J.D.

Blank, Thomas B. See Ford, Alan R.

Boeker, Peter. See Haas, Torsten.

Bonn, G.K. See Pallua, J.D.

Brill, Laurence M. Responding to Data Analysis and Evaluation Challenges in Mass Spectrometry-Based Methods for High-Throughput Proteomics. *Current Trends in Mass Spectrometry*, March, p. 36.

Brouillet, Carl. See Donahue, Michael.

Brunelli, Claudio. See Pereira, Alberto.

Brown, Steve. A Case for Capillary Electrophoresis. September, p. 876.

Bush, Laura. The 2011 LCGC Pittcon Awards. March, p. 258.

Bush, Laura. The Secrets of Electrospray Ionization: Why Less is More. March, p. 282.

C

Cao, Min. See Zhou, Zhi.

Capiello, Achille. See Palma, Pierangela.

Carrasco-Pancorbo, Alegria. See Cuadros-Rodriguez, Luis.

Carson, William W.; Zhou, Ming; and Kearney, Tom. An LC-IR Hyphenated Approach to Characterize Polymeric Excipients in Pharmaceutical Formulations. *Recent Developments in HPLC/UHPLC*, April, p. 50.

Castro-Suarez, John R. See Hernández-Rivera, Samuel P.

Chambers, Erin E.; Fountain, Kenneth J.; and Diehl, Diane M. A Strategic Approach to the Quantification of Therapeutic Peptides in Biological Fluids. *Recent Developments in HPLC/UHPLC*, April, p. 24.

Chaurand, Pierre. Imaging Mass Spectrometry: Current Performance and Upcoming Challenges. *Current Trends in Mass Spectrometry*, July, p. 30.

Chen, Gui-liang. See Yang, Wan-hua.

Chen, Li. See Gao, Hegang.

Chimuka, Luke. See Sibya, Precious.

Christesen, Steve D. See Ford, Alan R.

Cole, Alun. See Haas, Torsten.

Coulier, Leon; Tas, Albert; and Thissen, Uwe. Food Metabolomics: Fact or Fiction? *Current Trends in Mass Spectrometry*, May, p. 34.

Countryman, Sky. See Li, Shuguang.

Cowin, James P. See Yu, Xiao-Ying.

Crafts, Christopher. See DeLand, Phillip.

Cuadros-Rodriguez, Luis; Carrasco-Pancorbo, Alegria; and Iglesias, Natalia Navas. Mass Spectrometry in Analytical Lipidomics. *Current Trends in Mass Spectrometry*, July, p. 8.

Cukrowska, Ewa. See Sibya, Precious.

D

Dang, Yi; Moore, Jeffrey; Huang, Gloria; Lipp, Markus; Jones, Barbara; and Griffiths, James C. Establishing USP

Rebaudioside A and Stevioside Reference Standards for the *Food Chemicals Codex*. May, p. 430.

David, Frank; Sandra, Pat; and Hancock, Peter. Determining High-Molecular-Weight Phthalates in Sediments Using GC-APCI-TOF-MS. *Current Trends in Mass Spectrometry*, May, p. 42.

David, Frank. See Pereira, Alberto.

DeLand, Phillip; Waraska, John; Crafts, Christopher; Acworth, Ian; Steiner, Frank; and Fehrenbach, Tobias. Improving the Universal Response of Nebulization-Based UHPLC Detection. *Recent Developments in HPLC/UHPLC*, April, p. 45.

Denn, Mark. See Swales, John G.

Desmet, Gert. "John Knox, a Pioneer of Both Gas and Liquid Chromatography," in *The History of Chromatography*. November, p. 996.

Diehl, Diane M. See Chambers, Erin E.

Diem, Max. See Hernández-Rivera, Samuel P.

Dolan, John W. "Column Triage," in LC Troubleshooting. October, p. 908.

Dolan, John W. "How Fast Can a Gradient Be Run?" in LC Troubleshooting. August, p. 652.

Dolan, John W. "Locating Precision Problems," in LC Troubleshooting. November, p. 982.

Dolan, John W. See Pedersen, Kasper.

Dolan, John W. "Selectivity in Reversed-Phase LC Separations, Part II: Solvent-Strength Selectivity," in LC Troubleshooting. January, p. 28.

Dolan, John W. "Selectivity in Reversed-Phase LC Separations, Part III: Column-Type Selectivity," in LC Troubleshooting. March, p. 236.

Dolan, John W. "Selectivity in Reversed-Phase LC Separations, Part IV: Pressure Selectivity," in LC Troubleshooting. April, p. 318.

Dolan, John W. "The Case of the Too Big Little Peak," in LC Troubleshooting. June, p. 486.

Dolan, John W. "Troubleshooting Basics, Part I: Where to Start?" in LC Troubleshooting. July, p. 570.

Dolan, John W. "Troubleshooting Basics, Part II: Pressure Problems," in LC Troubleshooting. September, p. 818.

Dolan, John W. "Troubleshooting Basics, Part III: Retention Problems," in LC Troubleshooting. December, p. 1046.

Donahue, Michael; Huang, Hermes; Brouillet, Carl; Smith, Wayne; and Farquharson, Stuart. Detecting Explosives by Portable Raman Analyzers: A Comparison of 785-, 976-, 1064-, and 1550-nm (Retina-Safe) Laser Excitation. *Defense and Homeland Security*, April, p. 24.

Dottery, Edwin L. See Ford, Alan R.

Duczak, Nick. See Swales, John G.

Dumancas, Gerard G. See Muriuki, Mary W.

E

Eitzer, Brian D. See Robb, Christina S.

Eksteen, Roy. See Kempf, Bruce.

Elian, Albert A.; Hackett, Jeffery; and Telepchak, Michael J. Analysis of Psilocybin and Psilocin in Urine Using SPE and LC-Tandem Mass Spectrometry. September, p. 854.

Elian, Albert A.; Hackett, Jeffery; and Telepchak, Michael J. Analysis of Phenazepam in Whole Blood Using Solid-Phase Extraction and LC-Tandem Mass Spectrometry. December, p. 1064.

Enders, Jeffrey R.; Goodwin, Cody R.; Marasco, Christina C.; Seale, Kevin T.; Wikswo, John P.; and McLean, John A. Advanced Structural Mass Spectrometry for Systems Biology: Pulling the Needles from Haystacks. *Current Trends in Mass Spectrometry*, July, p. 18.

Evans, Megan. An Emerging Leader: One Year Later. February, p. 196.

Evans, Megan. Review of the 59th Annual ASMS Conference. *Current Trends in Mass Spectrometry*, July, p. 54.

F

Famiglini, Giorgio. See Palma, Pierangela.

Farquharson, Stuart. See Donahue, Michael.

Fehrenbach, Tobias. See DeLand, Phillip.

Feng, Qin. See Yang, Wan-hua.

Fischer, Albert J. See Zou, Wei.

Fischer, Steve. See Sana, Theodore.

Fisher, Eric W. Advances in Spectroscopy for Detection and Identification of Potential Bioterror Agents. *Defense and Homeland Security*, April, p. 29.

Ford, Alan R.; Waterbury, Robert D.; Vunck, Darius M.; Rose, Jeremy B.; Blank, Thomas B.; Pohl, Ken R.; McVay, Troy A.; Dottery, Edwin L.; Hankus, Mikella E.; Holthoff, Ellen L.; Pellegrino, Paul M.; Christesen, Steve D.; and Fountain III, Augustus W. Explosives Sensing Using Multiple Optical Techniques in a Standoff Regime with a Common Platform. *Defense and Homeland Security*, April, p. 6.

Fountain III, Augustus W. See Ford, Alan R.

Fountain, Kenneth J. See Chambers, Erin E.

Franco, Pilar. "Still a Young Technology, Chiral Chromatography Makes Big Strides in Pharma," in *The History of Chromatography*. February, p. 156.

Furusawa, Naoto. A Rapid and Space-Saving Method for Determining Melamine in Milk Under Organic Solvent-Free Conditions. February, p. 162.

G

Gallagher, Richard T. See Swales, John G.

Gao, Hegang; Chen, Li; Pan, Guoshao; and Tu, Chunyu. Development and Validation of an HPTLC Method for Determination of Aflatoxin B₁. April, p. 348.

Gao, Yue. See Yu, Kate.

Gjelstad, Astrid; Taherkhani, Hamidreza; Rasmussen, Knut Einar; and Pedersen-Bjergaard, Stig. "Hollow Fiber Liquid-Phase Microextraction in the Three-Phase Mode — Practical Considerations," in *Sample Prep Perspectives*. December, p. 1038.

Goodwin, Cody R. See Enders, Jeffrey R.

Gorla, Srinivasa. See Roy, Arindam.

Grenier, Adam. See Andrade, Lawrence.

Griffiths, James C. See Dang, Yi.

H

Haas, Torsten; Boeker, Peter; Cole, Alun; and Horner, Gerhard. High-Definition Screening for Boar Taint in Fatback Samples Using GC-MS. *Current Trends in Mass Spectrometry*, July, p. 38.

Hackett, Jeffery. See Elian, Albert A.

Hancock, Peter. See David, Frank.

Handler, M. See Pallua, J.D.

Hankus, Mikella E. See Ford, Alan R.

Heckendorf, Amos. See Alpert, Andrew.

Heinle, Lance; and Jenkins, Gary. Creating a High-Throughput LC-MS-MS System Using Common Components. *Current Trends in Mass Spectrometry*, October, p. 16.

Helble, Joseph. Fast LC for Conventional HPLC Systems. *Recent Developments in HPLC/UHPLC*, April, p. 34.

Hernández-Rivera, Samuel P.; Castro-Suarez, John R.; Pacheco-Londoño, Leonardo C.; Primera-Pedrozo, Oliva M.; Rey-Villamizar, Nicolas; Vélez-Reyes, Miguel; and Diem, Max. Mid-Infrared Vibrational Spectroscopy Standoff Detection of Highly Energetic Materials: New Developments. *Defense and Homeland Security*, April, Digital Edition.

Hinshaw, John V. "Headspace Sampling," in *GC Connections*. October, p. 914.

Hinshaw, John V. "Hydrogen Carrier Gas and Vacuum Compensation," in *GC Connections*. January, p. 36.

Hinshaw, John V. "New Gas Chromatography Products at Pittcon 2011," in *GC Connections*. May, p. 402.

Hinshaw, John V. "Valves for Gas Chromatography, Part II: Applications," in *GC Connections*. July, p. 576.

Hinshaw, John V. "Valves for Gas Chromatography, Part III: Fluidic Switching Applications," in *GC Connections*. November, p. 988.

Hinshaw, John V. "Valves for Gas Chromatography: Fundamentals," in *GC Connections*. March, p. 246.

Holland, Lisa A. See Archer-Hartmann, Stephanie A.

Holthoff, Ellen L. See Ford, Alan R.

Horner, Gerhard. See Haas, Torsten.

Howard, James W. See Kay, Richard G.

Huang, Gloria. See Dang, Yi.

Huang, Hermes. See Donahue, Michael.

Huck-Pezzei, V. See Pallua, J.D.

Huck, C.W. See Pallua, J.D.

Hussain, Iqbal. See Ali, Imran.

I

Iedema, Martin J. See Yu, Xiao-Ying.

Iglesias, Natalia Navas. See Cuadros-Rodríguez, Luis.

Inloes, Roger. See Sadikin, Silvia.

J

Jakubowski, Jr., Edward M. See McGuire, Jeffrey M.

Jarvis, Michael J.Y. See Taylor, Adrian M.

Jenkins, Gary. See Heinle, Lance.

Jones, Barbara. See Dang, Yi.

K

Kang, Liping. See Yu, Kate.

Kaur, Manpreet; Malik, Ashok Kumar; and Singh, Baldev. Determination of Phenylurea Herbicides in Tap Water and Soft Drink Samples by HPLC–UV and Solid-Phase Extraction. April, p. 338.

Kay, Richard G.; Howard, James W.; and Pleasance, Steve. Time-Resolved SRM Analysis and Highly Multiplexed LC–MS–MS for Quantifying Tryptically Digested Proteins. *Current Trends in Mass Spectrometry*, March, p. 24.

Kearney, Tom. See Carson, William W.

Kempf, Bruce; Eksteen, Roy; and Barth, Howard G. The Effect of SEC Column Arrangement of Different Pore Sizes on

Resolution and Molecular Weight Measurements. August, p. 668.

Khunte, Bhagyashree A.; and Philippe, Laurence. Aggregated Singletons for Automated Purification Workflow. February, p. 170.

Klocker, H. See Pallua, J.D.

Koerner, Phil; and McGinley, Michael. 25-Hydroxyvitamin D₂/D₃ Analysis in Human Plasma Using LC–MS. *Current Trends in Mass Spectrometry*, March, p. 8.

Kok, Wim Th. See Qureshi, Rashid N.

Koleto, Michael. See Begley, Benjamin.

Kreimer, Simion. See Krull, Ira S.

Kremser, L. See Pallua, J.D.

Krull, I.S.; Rathore, A.; and Wheat, T. "Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans," In *Biotechnology Today*. December, p. 1052.

Krull, I.S.; Rathore, A.; and Wheat, Thomas E. "Current Applications of UHPLC in Biotechnology, Part I: Peptide Mapping and Amino Acid Analysis," in *Biotechnology Today*. September, p. 838.

Krull, Ira S.; Rathore, Anurag S.; and Kreimer, Simion. "Biotechnology Highlights from Isranalytica 2011," in *Biotechnology Today*. June, p. 502.

Krull, Ira. See Rathore, Anurag S.

Krull, Ira. See Swartz, Michael.

L

LaCourse, William R. "Pulsed Electrochemical Detection: Waveform Evolution," in *Innovations in HPLC*. July, p. 584.

Layne, Jeff. See Li, Shuguang.

Lazarescu, Vivi; Mulvihill, Mark J.; and Ma, Lifu. A Generic Workflow for Achiral SFC Purification of Complex Pharmaceutical Mixtures. May, p. 438.

Li, Li; and Schug, Kevin. On- and Off-Line Coupling of Separation Techniques to Ambient Ionization Mass Spectrometry. *Current Trends in Mass Spectrometry*, October, p. 8.

Li, Shuguang; Layne, Jeff; Countryman, Sky; and McGinley, Michael. A Sensitive, Specific, Accurate, and Fast LC–MS–MS Method for Measurement of Ethyl Glucuronide and Ethyl Sulfate in Human Urine. *Current Trends in Mass Spectrometry*, July, p. 42.

Lindner, H. See Pallua, J.D.

Ling, Wen-ting. See Yang, Wan-hua.

Lipp, Markus. See Dang, Yi.

Lynam, Ken. See Majors, Ronald E.

M

Ma, Baiping. See Yu, Kate.

Ma, Lifu. See Lazarescu, Vivi.

Majors, Ronald E. "Highlights of HPLC 2011," in *Column Watch*. September, p. 802.

Majors, Ronald E. "Method Translation in Liquid Chromatography," in *Column Watch*. June, p. 476.

Majors, Ronald E. "New Chromatography Columns and Accessories at Pittcon 2011: Part I," in *Column Watch*. March, p. 218.

Majors, Ronald E. "New Chromatography Columns and Accessories at Pittcon 2011: Part II," in *Column Watch*. April, p. 300.

Majors, Ronald E. "New Directions in Whole Blood Analysis: Dried Blood Spot Analysis and Beyond," in *Sample Prep Perspectives*. January, p. 14.

Majors, Ronald E.; and Lynam, Ken. "Method Translation in Gas Chromatography," in *Column Watch*. July, p. 560.

Majors, Ronald E.; and Raynie, Douglas. "The Greening of the Chromatography Laboratory," in *Sample Prep Perspectives*. February, p. 118.

Malik, Ashok Kumar. See Kaur, Manpreet.

Marasco, Christina C. See Enders, Jeffrey R.

Mason, Michael. See Patrick, Jeffrey S.

Matheson, Alasdair. Generous Results with MISER Chromatography. August, p. 683.

McClain, Ray; and Przybycien, Matt. "A Systematic Study of Achiral Stationary Phases Using Analytes Selected with a Molecular Diversity Model," in *Column Watch*. October, p. 894.

McGinley, Michael. See Koerner, Phil.

McGinley, Michael. See Li, Shuguang.

McGuire, Jeffrey M.; Jakubowski, Jr., Edward M.; and Thomson, Sandra A. Monitoring of Biological Matrices by GC–MS–MS for Chemical Warfare Nerve Agent Detection. *Defense and Homeland Security*, April, p. 12.

McLean, John A. See Enders, Jeffrey R.

McVay, Troy A. See Ford, Alan R.

Meding, S. See Pallua, J.D.

Millar, Alan. See Yu, Kate.

Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; and Bates, David E. Detection of Chemicals with Stand-off Raman Spectroscopy. *Defense and Homeland Security*, April, p. 18.

Moore, Jeffrey. See Dang, Yi.

Mulvihill, Mark J. See Lazarescu, Vivi.

Muriuki, Mary W.; Dumancas, Gerard G.; Purdie, Neil; and Reilly, Lisa. Quantification of Total ω -6 and ω -3 Fatty Acids

and ω -6/ ω -3 Ratio in Human Serum Using GC-MS. January, p. 60.

N
Netzer, M. See Pallua, J.D.

O
Osl, M. See Pallua, J.D.

P
Pacheco-Londoño, Leonardo C. See Hernández-Rivera, Samuel P.
Pallua, J.D.; Schaefer, G.; Bittner, L.K.; Pezzei, C.; Huck-Pezzei, V.; Schoenbichler, S. A.; Meding, S.; Rauser, S.; Walch, A.; Handler, M.; Netzer, M.; Osl, M.; Seger, M.; Pfeifer, B.; Baumgartner, C.; Lindner, H.; Kremser, L.; Sarg, B.; Klockner, H.; Bartsch, G.; Bonn, G.K.; and Huck, C.W. Matrix-Assisted Laser Desorption-Ionization Imaging Mass Spectrometry for Direct Tissue Analysis. *Current Trends in Mass Spectrometry*, October, p. 21.
Palma, Pierangela; Famiglini, Giorgio; Trufelli, Helga; and Capiello, Achille. Toward a Universal Detector for Small Molecule Applications: Direct-EI in LC-MS. January, p. 68.
Pan, Guoshao. See Gao, Hegang.
Patrick, Jeffrey S.; Siek, Kevin; Binkley, Joe; Artaev, Viatcheslav; and Mason, Michael. A New Path to High-Resolution HPLC-TOF-MS — Survey, Targeted, and Trace Analysis Applications of TOF-MS in the Analysis of Complex Biochemical Matrices. *Current Trends in Mass Spectrometry*, May, p. 18.
Pedersen-Bjergaard, Stig. See Gjelstad, Astrid.
Pedersen, Kasper; and Dolan, John W. "A Picture Is Worth a Thousand Words," in LC Troubleshooting. February, p. 136.
Pekol, Teresa. See Andrade, Lawrence.
Pellegrino, Paul M. See Ford, Alan R.
Pereira, Alberto; David, Frank; Vanhoechner, Gerd; Brunelli, Claudio; and Sandra, Pat. A Simple Instrumental Approach for "Supercritical" Fluid Chromatography in Drug Discovery and Its Consequences for Coupling with Mass Spectrometric and Light Scattering Detection. November, p. 1006.
Pereira, Luisa. HILIC-MS Sensitivity without Silica. March, p. 262.
Perman, Craig A.; and Telepchak, Michael. Why All C18 Phases Are Not Equal. June, p. 516.
Peter, Raimund M. See Swales, John G.

Pezzei, C. See Pallua, J.D.
Pfeifer, B. See Pallua, J.D.
Philippe, Laurence. See Khunte, Bhagyashree A.
Pleasance, Steve. See Kay, Richard G.
Pohl, Ken R. See Ford, Alan R.
Prest, Harry. See Wells, Greg.
Primera-Pedrozo, Oliva M. See Hernández-Rivera, Samuel P.
Przybyciel, Matt. See McClain, Ray.
Purdie, Neil. See Muriuki, Mary W.

Q
Qureshi, Rashid N.; and Kok, Wim Th. Optimization of Asymmetrical Flow Field-Flow Fractionation. January, p. 76.

R
Rasmussen, Knut Einar. See Gjelstad, Astrid.
Rathore, A. See Krull, I.S.
Rathore, Anurag S. See Krull, Ira S.
Rathore, Anurag S.; Bhambure, Rahul; and Krull, Ira S. "High-Throughput Tools and Approaches for Development of Process Chromatography Steps," in Biotechnology Today. March, p. 252.
Rauser, S. See Pallua, J.D.
Raynie, Douglas. See Majors, Ronald E.
Redkar, Sanjeev. See Sadikin, Silvia.
Reilly, Lisa. See Muriuki, Mary W.
Rey-Villamizar, Nicolas. See Hernández-Rivera, Samuel P.
Rieux, Laurent; Sneekes, Evert-Jan; and Swart, Remco. "Nano LC: Principles, Evolution, and State-of-the-Art of the Technique," in Innovations in HPLC. October, p. 926.
Robb, Christina S.; and Eitzer, Brian D. The Direct Analysis of Diquat and Paraquat in Lake Water Samples by *per* Aqueous Liquid Chromatography. January, p. 54.
Rose, Jeremy B. See Ford, Alan R.
Roy, Arindam; and Gorla, Srinivasa. Analytical Strategies in the Development of Generic Drug Products: The Role of Chromatography and Mass Spectrometry. *Current Trends in Mass Spectrometry*, October, p. 29.
Russ IV, Charles William. See Wells, Greg.

S
Sadikin, Silvia; Zhang, Dee Dee; Inloes, Roger; and Redkar, Sanjeev. "Ghost Peak Investigation in a Reversed-Phase Gradient LC System," in LC Troubleshooting. May, p. 394.
Saleem, Kishwar. See Ali, Imran.

Sana, Theodore; Fischer, Steve; and Tichy, Shane E. Metabolomics Workflows: Combining Untargeted Discovery-Based and Targeted Confirmation Approaches for Mining Metabolomics Data. *Current Trends in Mass Spectrometry*, March, p. 12.
Sandra, Pat. See David, Frank.
Sandra, Pat. See Pereira, Alberto.
Sarg, B. See Pallua, J.D.
Schaefer, G. See Pallua, J.D.
Schoenbichler, S.A. See Pallua, J.D.
Schug, Kevin. See Li, Li.
Seale, Kevin T. See Enders, Jeffrey R.
Seger, M. See Pallua, J.D.
Sharma, Shiv K. See Misra, Anupam K.
Sibya, Precious; Cukrowska, Ewa; and Chimuka, Luke. "Prevention Is Better than Cure: An Alternative Approach in the Sample Preparation of Complex Samples," in Sample Prep Perspectives. November, p. 970.
Siek, Kevin. See Alonso, David E.
Siek, Kevin. See Patrick, Jeffrey S.
Singh, Baldev. See Kaur, Manpreet.
Smith, Wayne. See Donahue, Michael.
Sneekes, Evert-Jan. See Rieux, Laurent.
Steiner, Frank. See DeLand, Phillip.
Stranz, David. See Balogh, Michael P.
Swales, John G.; Gallagher, Richard T.; Denn, Mark; Peter, Raimund M.; and Duczak, Nick. Laser Diode Thermal Desorption Tandem Mass Spectrometry for Simultaneous Quantitation of Metformin and Sitagliptin in Mouse and Human Dried Blood Spots. October, p. 936.
Swart, Remco. See Rieux, Laurent.
Swartz, Michael; and Krull, Ira. "Analytical Method Validation: Back to Basics, Part II," in Validation Viewpoint. January, p. 44.
Swartz, Michael. "HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review," in Innovations in HPLC. May, p. 414.
Swartz, Michael. Recent Developments in HPLC/UHPLC. *Recent Developments in HPLC/UHPLC*, April, p. 8.

T
Taherkhani, Hamidreza. See Gjelstad, Astrid.
Tang, Youwen. See Zhou, Zhi.
Tas, Albert. See Coulier, Leon.
Taylor, Adrian M.; and Jarvis, Michael J.Y. High-Throughput Quantitative Analysis of Vitamin D Using a Multiple Parallel LC-MS System Combined with Integrated On-Line SPE. *Current Trends in Mass Spectrometry*, May, p. 12.

Telechak, Michael J. See Elian, Albert A.
 Telechak, Michael. See Perman, Craig A.
 Thissen, Uwe. See Coulier, Leon.
 Thomson, Sandra A. See McGuire, Jeffrey M.
 Tichy, Shane E. See Sana, Theodore.
 Tolstikov, Vladimir V. See Zou, Wei.
 Trufelli, Helga. See Palma, Pierangela.
 Tu, Chunyu. See Gao, Hegang.

U

Unger, Klaus K. "My Mentors, Colleagues, and Friends in Separation Science and Technology, Part I," in *The History of Chromatography*. April, p. 326.
 Unger, Klaus K. "My Mentors, Colleagues, and Friends in Separation Science and Technology, Part II," in *The History of Chromatography*. August, p. 658.

V

Vanhoenacker, Gerd. See Pereira, Alberto.
 Veeneman, Rebecca A. Improving the Efficiency of Fatty Acid Methyl Ester Preparation Using Automated Sample Preparation Techniques. July, p. 594.
 Vélez-Reyes, Miguel. See Hernández-Rivera, Samuel P.
 Veryovkin, Igor. See Zinovev, Alexander.
 Vunck, Darius M. See Ford, Alan R.

W

Walch, A. See Pallua, J.D.
 Waraska, John. See DeLand, Phillip.
 Waterbury, Robert D. See Ford, Alan R.
 Wells, Greg; Prest, Harry; and Russ IV, Charles William. Why Use Signal-to-Noise As a Measure of MS Performance When It Is Often Meaningless? *Current Trends in Mass Spectrometry*, May, p. 28.
 Wheat, T. See Krull, I.S.
 Wheat, Thomas E. See Krull, I.S.
 Wikswo, John P. See Enders, Jeffrey R.

X

Xue, Gang; and Zhang, Lin. Automated Peak Tracking for Comprehensive Impurity Profiling with Chemometric Mass Spectrometric Data Processing. *Recent Developments in HPLC/UHPLC*, April, p. 40.

Y

Yang, Li. See Yu, Xiao-Ying.
 Yang, Wan-hua; Ling, Wen-ting; Feng, Qin; and Chen, Gui-liang. Determination of Clenbuterol-Like Beta-Agonist Residues in Hair. July, p. 600.
 Yasuor, Hagai. See Zou, Wei.
 Yu, HeShui. See Yu, Kate.

Yu, Kate; Ma, Baiping; Yu, HeShui; Kang, Liping; Zhang, Jie; Gao, Yue; and Millar, Alan. Comparison of Extracts from Dry and Alcohol-Steamed Root of *Polygonatum kingianum* (Huang Jing) by Sub-2-μm-LC-TOF-MS. *Current Trends in Mass Spectrometry*, March, p. 30.

Yu, Xiao-Ying; Yang, Li; Zhu, Zihua; Cowin, James P.; and Iedema, Martin J. Probing Aqueous Surfaces by TOF-SIMS. *Current Trends in Mass Spectrometry*, October, p. 34.

Z

Zhang, Dee Dee. See Sadikin, Silvia.
 Zhang, Jie. See Yu, Kate.
 Zhang, Lin. See Xue, Gang.
 Zhou, Liping. See Zhou, Zhi.
 Zhou, Ming. See Carson, William W.
 Zhou, Zhi; Cao, Min; Zhou, Liping; Zuo, Xiongjun; and Tang, Youwen. Determination of α-Amanitin in Human Serum by Solid-Phase Extraction Coupled with HPLC-UV. August, p. 672.
 Zhu, Zihua. See Yu, Xiao-Ying.
 Zinovev, Alexander; and Veryovkin, Igor. Mass Spectrometry of Organic Molecules and Laser-Induced Acoustic Desorption: Applications, Mechanisms, and Perspectives. *Current Trends in Mass Spectrometry*, July, p. 24.
 Zou, Wei; Yasuor, Hagai; Fischer, Albert J.; and Tolstikov, Vladimir V. Trace Metabolic Profiling and Pathway Analysis of Clomazone Using LC-MS-MS and High-Resolution MS. September, p. 860.
 Zuo, Xiongjun. See Zhou, Zhi.

SUBJECTS**AMINO ACIDS**

"Pulsed Electrochemical Detection: Waveform Evolution," in *Innovations in HPLC*. William R. LaCourse. July, p. 584.

BIOLOGICAL AND CLINICAL ASSAYS

Analysis of Phenazepam in Whole Blood Using Solid-Phase Extraction and LC-Tandem Mass Spectrometry. Albert A. Elian, Jeffery Hackett, and Michael J. Telechak. December, p. 1064.
 Analysis of Psilocybin and Psilocin in Urine Using SPE and LC-Tandem Mass Spectrometry. Albert A. Elian, Jeffery Hackett, and Michael J. Telechak. September, p. 854.

Determination of α-Amanitin in Human Serum by Solid-Phase Extraction Cou-

pled with HPLC-UV. Zhi Zhou, Min Cao, Liping Zhou, Xiongjun Zuo, and Youwen Tang. August, p. 672.

Determination of Clenbuterol-Like Beta-Agonist Residues in Hair. Wan-hua Yang, Wen-ting Ling, Qin Feng, and Gui-liang Chen. July, p. 600.

Electrostatic Repulsion-Hydrophilic Interaction Chromatography: Using One Mode to Tune Retention from a Second Mode. Andrew Alpert and Amos Heckendorf. July, p. 606.

Laser Diode Thermal Desorption Tandem Mass Spectrometry for Simultaneous Quantitation of Metformin and Sitagliptin in Mouse and Human Dried Blood Spots. John G. Swales, Richard T. Gallagher, Mark Denn, Raimund M. Peter, and Nick Duczak. October, p. 936.

"Nano LC: Principles, Evolution, and State-of-the-Art of the Technique," in *Innovations in HPLC*. Laurent Rieux, Evert-Jan Sneekes, and Remco Swart. October, p. 926.

"New Directions in Whole Blood Analysis: Dried Blood Spot Analysis and Beyond," in *Sample Prep Perspectives*. Ronald E. Majors. January, p. 14.

On-Line Whole Blood Analysis Using Microextraction by Packed Sorbent and LC-MS-MS. Mohamed Abdel-Rehim. July, p. 612.

"Prevention Is Better than Cure: An Alternative Approach in the Sample Preparation of Complex Samples," in *Sample Prep Perspectives*. Precious Sibiya, Ewa Cukrowska, and Luke Chimuka. November, p. 970.

Quantification of Total ω-6 and ω-3 Fatty Acids and ω-6/ω-3 Ratio in Human Serum Using GC-MS. Mary W. Muriuki, Gerard G. Dumancas, Neil Purdie, and Lisa Reilly. January, p. 60.

BIOTECHNOLOGY

"Biotechnology Highlights from Isranalytica," in *Biotechnology Today*. Ira S. Krull, Anurag S. Rathore, and Simion Kreimer. June, p. 502.

"Current Applications of UHPLC in Biotechnology, Part I: Peptide Mapping and Amino Acid Analysis," in *Biotechnology Today*. I.S. Krull, A. Rathore, and Thomas E. Wheat. September, p. 838.

"Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans," In *Biotechnology Today*. I.S. Krull, A. Rathore, and T. Wheat. December, p. 1052.

LC|GC
GROUP

LC|GC GROUP

LC|GC
GROUP

We're **more** than just a magazine...

LC|GC
North America

Solutions for separation scientists
Volume 29 Number 8 August 2011
www.chromatographyonline.com

e-Separation
Solutions

Weekly e-newsletter covering all of the hottest chromatography topics, techniques, and applications. Each e-newsletter is dedicated to a different area of separation science.

The
Column

LC|GC

Volume 29 Number 9 September 2011
www.chromatographyonline.com

Over 139,000 global industry professionals read *The Column* digital magazine twice monthly. Read topical issues, application-based articles and opinions from leading industry figures.

e-Application
Note Alert

Monthly e-newsletter created to give you the tools needed in your day-to-day job, showcasing useful applications broken down by technique.

Issue
Alert

Provides a preview of what's coming up in the latest print editions of our magazines. Be the first to know about new industry developments from around the world.

ADVANSTAR
SCIENCE

LC and LC-MS-MS
Analysis of Hallucinogenic
Mushroom Compounds
MS Analysis of Complex Samples
LC Troubleshooting Basics:
Pressure Problems
Highlights of HPLC 2011

+ access to podcasts web seminars surveys

Get all this and more. Subscribe now at
www.chromatographyonline.com

"High-Throughput Tools and Approaches for Development of Process Chromatography Steps," in *Biotechnology Today*. Anurag S. Rathore, Rahul Bhambure, and Ira S. Krull. March, p. 252.

"HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review," in *Innovations in HPLC*. Michael Swartz. May, p. 414.

BIOTECHNOLOGY TODAY

COLUMN

"Biotechnology Highlights from Israna-lytica," in *Biotechnology Today*. Ira S. Krull, Anurag S. Rathore, and Simion Kreimer. June, p. 502.

"Current Applications of UHPLC in Biotechnology, Part I: Peptide Mapping and Amino Acid Analysis," in *Biotechnology Today*. I.S. Krull, A. Rathore, and Thomas E. Wheat. September, p. 838.

"Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans," in *Biotechnology Today*. I.S. Krull, A. Rathore, and T. Wheat. December, p. 1052.

"High-Throughput Tools and Approaches for Development of Process Chromatography Steps," in *Biotechnology Today*. Anurag S. Rathore, Rahul Bhambure, and Ira S. Krull. March, p. 252.

CAPILLARY ELECTROPHORESIS

A Case for Capillary Electrophoresis. Steve Brown. September, p. 876.

"Self-Assembled Nanomaterials for Enhanced Chemical Separations," in *Column Watch*. Stephanie A. Archer-Hartmann and Lisa A. Holland. May, p. 384.

CHIRAL SEPARATIONS

"New Chromatography Columns and Accessories at Pittcon 2011: Part I. Ronald E. Majors. March, p. 218.

"The State of the Art in Chiral Capillary Gas Chromatography," in *Column Watch*. Thomas Beesley. August, p. 642.

"Still a Young Technology, Chiral Chromatography Makes Big Strides in Pharma," in *The History of Chromatography*. Pilar Franco. February, p. 156.

CHROMATOGRAPHIC THEORY

"The Case of the Too Big Little Peak," in *LC Troubleshooting*. John W. Dolan. June, p. 486.

"How Fast Can a Gradient Be Run?" in *LC Troubleshooting*. John W. Dolan. August, p. 652.

"Hydrogen Carrier Gas and Vacuum Compensation," in *GC Connections*. John V. Hinshaw. January, p. 36.

"Locating Precision Problems," in *LC Troubleshooting*. John W. Dolan. November, p. 982.

"Nano LC: Principles, Evolution, and State-of-the-Art of the Technique," in *Innovations in HPLC*. Laurent Rieux, Evert-Jan Sneekes, and Remco Swart. October, p. 926.

Optimization of Asymmetrical Flow Field-Flow Fractionation. Rashid N. Qureshi and Wim Th. Kok. January, p. 76.

"A Picture Is Worth a Thousand Words," in *LC Troubleshooting*. Kasper Pedersen and John W. Dolan. February, p. 136.

"Selectivity in Reversed-Phase LC Separations, Part II: Solvent-Strength Selectivity," in *LC Troubleshooting*. John W. Dolan. January, p. 28.

"Selectivity in Reversed-Phase LC Separations, Part III: Column-Type Selectivity," in *LC Troubleshooting*. John W. Dolan. March, p. 236.

"Troubleshooting Basics, Part II: Pressure Problems," in *LC Troubleshooting*. John W. Dolan. September, p. 818.

COLUMN MAINTENANCE AND TROUBLESHOOTING

"Column Triage," in *LC Troubleshooting*. John W. Dolan. October, p. 908.

COLUMN WATCH COLUMN

"Highlights of HPLC 2011," in *Column Watch*. Ronald E. Majors. September, p. 802.

"Method Translation in Gas Chromatography," in *Column Watch*. Ronald E. Majors and Ken Lynam. July, p. 560.

"Method Translation in Liquid Chromatography," in *Column Watch*. Ronald E. Majors. June, p. 476.

"New Chromatography Columns and Accessories at Pittcon 2011: Part I. Ronald E. Majors. March, p. 218.

"New Chromatography Columns and Accessories at Pittcon 2011: Part II," in *Column Watch*. Ronald E. Majors. April, p. 300.

"Self-Assembled Nanomaterials for Enhanced Chemical Separations," in *Column Watch*. Stephanie A. Archer-Hartmann and Lisa A. Holland. May, p. 384.

"The State of the Art in Chiral Capillary Gas Chromatography," in *Column Watch*. Thomas Beesley. August, p. 642.

"A Systematic Study of Achiral Stationary Phases Using Analytes Selected with a Molecular Diversity Model," in *Column Watch*. Ray McClain and Matt Przybyciel. October, p. 894.

COLUMNS FOR GC

"New Chromatography Columns and Accessories at Pittcon 2011: Part II," in *Column Watch*. Ronald E. Majors. April, p. 300.

"The State of the Art in Chiral Capillary Gas Chromatography," in *Column Watch*. Thomas Beesley. August, p. 642.

COLUMNS FOR LC

"New Chromatography Columns and Accessories at Pittcon 2011: Part I. Ronald E. Majors. March, p. 218.

COLUMNS FOR SFC

"New Chromatography Columns and Accessories at Pittcon 2011: Part II," in *Column Watch*. Ronald E. Majors. April, p. 300.

"A Systematic Study of Achiral Stationary Phases Using Analytes Selected with a Molecular Diversity Model," in *Column Watch*. Ray McClain and Matt Przybyciel. October, p. 894.

COMPUTERS AND SOFTWARE

"Method Translation in Gas Chromatography," in *Column Watch*. Ronald E. Majors and Ken Lynam. July, p. 560.

"Method Translation in Liquid Chromatography," in *Column Watch*. Ronald E. Majors. June, p. 476.

DETECTORS FOR LC

"HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review," in *Innovations in HPLC*. Michael Swartz. May, p. 414.

"Pulsed Electrochemical Detection: Waveform Evolution," in *Innovations in HPLC*. William R. LaCourse. July, p. 584.

Toward a Universal Detector for Small Molecule Applications: Direct-EI in LC-MS. Pierangela Palma, Giorgio Famiglini, Helga Trufelli, and Achille Capiello. January, p. 68.

DETECTORS FOR SFC

A Simple Instrumental Approach for "Supercritical" Fluid Chromatography in Drug Discovery and Its Consequences for Coupling with Mass Spectrometric

and Light Scattering Detection. Alberto Pereira, Frank David, Gerd Vanhoeacker, Claudio Brunelli, and Pat Sandra. November, p. 1006.

DRUG DISCOVERY

A Simple Instrumental Approach for "Supercritical" Fluid Chromatography in Drug Discovery and Its Consequences for Coupling with Mass Spectrometric and Light Scattering Detection. Alberto Pereira, Frank David, Gerd Vanhoeacker, Claudio Brunelli, and Pat Sandra. November, p. 1006.

ENVIRONMENTAL ANALYSIS

Determination of Phenylurea Herbicides in Tap Water and Soft Drink Samples by HPLC-UV and Solid-Phase Extraction. Manpreet Kaur, Ashok Kumar Malik, and Baldev Singh. April, p. 338.

The Direct Analysis of Diquat and Paraquat in Lake Water Samples by *per* Aqueous Liquid Chromatography. Christina S. Robb and Brian D. Eitzer. January, p. 54.

"The Greening of the Chromatography Laboratory," in Sample Prep Perspectives. Ronald E. Majors and Douglas Raynie. February, p. 118.

EQUIPMENT MAINTENANCE AND TROUBLESHOOTING

"Ghost Peak Investigation in a Reversed-Phase Gradient LC System," in LC Troubleshooting. Silvia Sadikin, Dee Dee Zhang, Roger Inloes, and Sanjeev Redkar. May, p. 394.

"Troubleshooting Basics, Part I: Where to Start?" in LC Troubleshooting. John W. Dolan. July, p. 570.

"Troubleshooting Basics, Part II: Pressure Problems," in LC Troubleshooting. John W. Dolan. September, p. 818.

"Troubleshooting Basics, Part III: Retention Problems," in LC Troubleshooting. John W. Dolan. December, p. 1046.

"Valves for Gas Chromatography, Part II: Applications," in GC Connections. John V. Hinshaw. July, p. 576.

FIELD-FLOW FRACTIONATION

Optimization of Asymmetrical Flow Field-Flow Fractionation. Rashid N. Qureshi and Wim Th. Kok. January, p. 76.

FOOD AND BEVERAGE ANALYSIS

Determination of Phenylurea Herbicides in Tap Water and Soft Drink Samples by

HPLC-UV and Solid-Phase Extraction. Manpreet Kaur, Ashok Kumar Malik, and Baldev Singh. April, p. 338.

Development and Validation of an HPTLC

Method for Determination of Aflatoxin B₁. Hegang Gao, Li Chen, Guoshao Pan, and Chunyu Tu. April, p. 348.

Establishing USP Rebaudioside A and Stevioside Reference Standards for the

Food Chemicals Codex. Yi Dang, Jeffrey Moore, Gloria Huang, Markus Lipp, Barbara Jones, and James C. Griffiths. May, p. 430.

Improving the Efficiency of Fatty Acid Methyl

Ester Preparation Using Automated Sample Preparation Techniques. Rebecca A. Veeneman. July, p. 594.

A Rapid and Space-Saving Method for Determining Melamine in Milk Under Organic Solvent-Free Conditions. Naoto Furusawa. February, p. 162.

GAS CHROMATOGRAPHY

"Headspace Sampling," in GC Connections. John V. Hinshaw. October, p. 914.

"Hydrogen Carrier Gas and Vacuum Compensation," in GC Connections. John V. Hinshaw. January, p. 36.

Improving the Efficiency of Fatty Acid Methyl Ester Preparation Using Automated Sample Preparation Techniques. Rebecca A. Veeneman. July, p. 594.

"Method Translation in Gas Chromatography," in Column Watch. Ronald E. Majors and Ken Lynam. July, p. 560.

"New Chromatography Columns and Accessories at Pittcon 2011: Part II," in Column Watch. Ronald E. Majors. April, p. 300.

"New Gas Chromatography Products at Pittcon," in GC Connections. John V. Hinshaw. May, p. 402.

Quantification of Total ω -6 and ω -3 Fatty Acids and ω -6/ ω -3 Ratio in Human Serum Using GC-MS. Mary W. Muriuki, Gerard G. Dumancas, Neil Purdie, and Lisa Reilly. January, p. 60.

"The State of the Art in Chiral Capillary Gas Chromatography," in Column Watch. Thomas Beesley. August, p. 642.

"Valves for Gas Chromatography: Fundamentals," in GC Connections. John V. Hinshaw. March, p. 246.

"Valves for Gas Chromatography, Part II: Applications," in GC Connections. John V. Hinshaw. July, p. 576.

"Valves for Gas Chromatography, Part III: Fluidic Switching Applications,"

in GC Connections. John V. Hinshaw. November, p. 988.

GC CONNECTIONS COLUMN

"Headspace Sampling," in GC Connections. John V. Hinshaw. October, p. 914.

"Hydrogen Carrier Gas and Vacuum Compensation," in GC Connections. John V. Hinshaw. January, p. 36.

"New Gas Chromatography Products at Pittcon," in GC Connections. John V. Hinshaw. May, p. 402.

"Valves for Gas Chromatography: Fundamentals," in GC Connections. John V. Hinshaw. March, p. 246.

"Valves for Gas Chromatography, Part II: Applications," in GC Connections. John V. Hinshaw. July, p. 576.

"Valves for Gas Chromatography, Part III: Fluidic Switching Applications," in GC Connections. John V. Hinshaw. November, p. 988.

GC-MS

"Hydrogen Carrier Gas and Vacuum Compensation," in GC Connections. John V. Hinshaw. January, p. 36.

"Problem Solving in the Chemical Industry," in MS — The Practical Art. Michael P. Balogh. February, p. 144.

Quantification of Total ω -6 and ω -3 Fatty Acids and ω -6/ ω -3 Ratio in Human Serum Using GC-MS. Mary W. Muriuki, Gerard G. Dumancas, Neil Purdie, and Lisa Reilly. January, p. 60.

"Testing the Critical Interface: Leachables and Extractables," in MS — The Practical Art. Michael P. Balogh. June, p. 492.

GRADIENT ELUTION

"Ghost Peak Investigation in a Reversed-Phase Gradient LC System," in LC Troubleshooting. Silvia Sadikin, Dee Dee Zhang, Roger Inloes, and Sanjeev Redkar. May, p. 394.

"How Fast Can a Gradient Be Run?" in LC Troubleshooting. John W. Dolan. August, p. 652.

"Method Translation in Liquid Chromatography," in Column Watch. Ronald E. Majors. June, p. 476.

HEADSPACE ANALYSIS

"Headspace Sampling," in GC Connections. John V. Hinshaw. October, p. 914.

"Testing the Critical Interface: Leachables and Extractables," in MS — The Practical Art. Michael P. Balogh. June, p. 492.

HISTORY OF CHROMATOGRAPHY

“John Knox, a Pioneer of Both Gas and Liquid Chromatography,” in *The History of Chromatography*. Gert Desmet. November, p. 996.

“My Mentors, Colleagues, and Friends in Separation Science and Technology, Part I,” in *The History of Chromatography*. Klaus K. Unger. April, p. 326.

“My Mentors, Colleagues, and Friends in Separation Science and Technology, Part II,” in *The History of Chromatography*. Klaus K. Unger. August, p. 658.

“Still a Young Technology, Chiral Chromatography Makes Big Strides in Pharma,” in *The History of Chromatography*. Pilar Franco. February, p. 156.

HYDROPHILIC INTERACTION CHROMATOGRAPHY

“Biotechnology Highlights from Israna-lytica,” in *Biotechnology Today*. Ira S. Krull, Anurag S. Rathore, and Simion Kreimer. June, p. 502.

“The Direct Analysis of Diquat and Paraquat in Lake Water Samples by *per* Aqueous Liquid Chromatography.” Christina S. Robb and Brian D. Eitzer. January, p. 54.

“Electrostatic Repulsion-Hydrophilic Interaction Chromatography: Using One Mode to Tune Retention from a Second Mode.” Andrew Alpert and Amos Heckendorf. July, p. 606.

“Highlights of HPLC 2011,” in *Column Watch*. Ronald E. Majors. September, p. 802.

HILIC-MS Sensitivity without Silica. Luisa Pereira. March, p. 262.

INNOVATIONS IN HPLC COLUMN

“HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review,” in *Innovations in HPLC*. Michael Swartz. May, p. 414.

“Nano LC: Principles, Evolution, and State-of-the-Art of the Technique,” in *Innovations in HPLC*. Laurent Rieux, Evert-Jan Sneekes, and Remco Swart. October, p. 926.

“Pulsed Electrochemical Detection: Waveform Evolution,” in *Innovations in HPLC*. William R. LaCourse. July, p. 584.

ION CHROMATOGRAPHY

“HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review,” in *Innovations in HPLC*. Michael Swartz. May, p. 414.

“Pulsed Electrochemical Detection: Waveform Evolution,” in *Innovations in HPLC*. William R. LaCourse. July, p. 584.

ION-EXCHANGE CHROMATOGRAPHY

“New Chromatography Columns and Accessories at Pittcon 2011: Part I.” Ronald E. Majors. March, p. 218.

INTERVIEWS

“A Case for Capillary Electrophoresis.” Steve Brown. September, p. 876.

“An Emerging Leader: One Year Later.” Megan Evans. February, p. 196.

“Generous Results with MISER Chromatography.” Alasdair Matheson. August, p. 683.

“The Secrets of Electrospray Ionization: Why Less is More.” Laura Bush. March, p. 282.

LC TROUBLESHOOTING COLUMN

“The Case of the Too Big Little Peak,” in *LC Troubleshooting*. John W. Dolan. June, p. 486.

“Column Triage,” in *LC Troubleshooting*. John W. Dolan. October, p. 908.

“Ghost Peak Investigation in a Reversed-Phase Gradient LC System,” in *LC Troubleshooting*. Silvia Sadikin, Dee Dee Zhang, Roger Inloes, and Sanjeev Redkar. May, p. 394.

“How Fast Can a Gradient Be Run?” in *LC Troubleshooting*. John W. Dolan. August, p. 652.

“Locating Precision Problems,” in *LC Troubleshooting*. John W. Dolan. November, p. 982.

“A Picture Is Worth a Thousand Words,” in *LC Troubleshooting*. Kasper Pedersen and John W. Dolan. February, p. 136.

“Selectivity in Reversed-Phase LC Separations, Part II: Solvent-Strength Selectivity,” in *LC Troubleshooting*. John W. Dolan. January, p. 28.

“Selectivity in Reversed-Phase LC Separations, Part III: Column-Type Selectivity,” in *LC Troubleshooting*. John W. Dolan. March, p. 236.

“Selectivity in Reversed-Phase LC Separations, Part IV: Pressure Selectivity,” in *LC Troubleshooting*. John W. Dolan. April, p. 318.

“Troubleshooting Basics, Part I: Where to Start?” in *LC Troubleshooting*. John W. Dolan. July, p. 570.

“Troubleshooting Basics, Part II: Pressure Problems,” in *LC Troubleshooting*. John W. Dolan. September, p. 818.

“Troubleshooting Basics, Part III: Retention Problems,” in *LC Troubleshooting*. John W. Dolan. December, p. 1046.

LC-MS

“Aggregated Singletons for Automated Purification Workflow.” Bhagyashree A. Khunte and Laurence Philippe. February, p. 170.

“Analysis of Phenazepam in Whole Blood Using Solid-Phase Extraction and LC-Tandem Mass Spectrometry.” Albert A. Elian, Jeffery Hackett, and Michael J. Telepchak. December, p. 1064.

“Analysis of Psilocybin and Psilocin in Urine Using SPE and LC-Tandem Mass Spectrometry.” Albert A. Elian, Jeffery Hackett, and Michael J. Telepchak. September, p. 854.

“Biotechnology Highlights from Israna-lytica,” in *Biotechnology Today*. Ira S. Krull, Anurag S. Rathore, and Simion Kreimer. June, p. 502.

“Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans,” in *Biotechnology Today*. I.S. Krull, A. Rathore, and T. Wheat. December, p. 1052.

“Determination of Clenbuterol-Like Beta-Agonist Residues in Hair.” Wan-hua Yang, Wen-ting Ling, Qin Feng, and Gui-liang Chen. July, p. 600.

“The Direct Analysis of Diquat and Paraquat in Lake Water Samples by *per* Aqueous Liquid Chromatography.” Christina S. Robb and Brian D. Eitzer. January, p. 54.

HILIC-MS Sensitivity without Silica. Luisa Pereira. March, p. 262.

Laser Diode Thermal Desorption Tandem Mass Spectrometry for Simultaneous Quantitation of Metformin and Sitalgliptin in Mouse and Human Dried Blood Spots. John G. Swales, Richard T. Gallagher, Mark Denn, Raimund M. Peter, and Nick Duczak. October, p. 936.

“Nano LC: Principles, Evolution, and State-of-the-Art of the Technique,” in *Innovations in HPLC*. Laurent Rieux, Evert-Jan Sneekes, and Remco Swart. October, p. 926.

On-Line Whole Blood Analysis Using Microextraction by Packed Sorbent and LC-MS-MS. Mohamed Abdel-Rehim. July, p. 612.

The Secrets of Electrospray Ionization: Why Less is More. Laura Bush. March, p. 282.

Toward a Universal Detector for Small Molecule Applications: Direct-EI in

LC-MS. Pierangela Palma, Giorgio Famiglini, Helga Trufelli, and Achille Capiello. January, p. 68.
Trace Metabolic Profiling and Pathway Analysis of Clomazone Using LC-MS-MS and High-Resolution MS. Wei Zou, Hagai Yasuor, Albert J. Fischer, and Vladimir V. Tolstikov. September, p. 860.

MEETING REPORTS

“Biotechnology Highlights from Israna-
lytica,” in Biotechnology Today. Ira S. Krull, Anurag S. Rathore, and Simion Kreimer. June, p. 502.
“Highlights of HPLC 2011,” in Column Watch. Ronald E. Majors. September, p. 802.
The 2011 *LCGC* Pittcon Awards. Laura Bush. March, p. 258.

METHOD DEVELOPMENT AND OPTIMIZATION

“The Case of the Too Big Little Peak,” in LC Troubleshooting. John W. Dolan. June, p. 486.
“Ghost Peak Investigation in a Reversed-
Phase Gradient LC System,” in LC Troubleshooting. Silvia Sadikin, Dee Dee Zhang, Roger Inloes, and Sanjeev Redkar. May, p. 394.
“How Fast Can a Gradient Be Run?” in LC Troubleshooting. John W. Dolan. August, p. 652.

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,” in Innovations in HPLC. Michael Swartz. May, p. 414.

“Locating Precision Problems,” in LC Trou-
bleshooting. John W. Dolan. November, p. 982.

“Method Translation in Gas Chromatog-
raphy,” in Column Watch. Ronald E. Majors and Ken Lynam. July, p. 560.

“Method Translation in Liquid Chroma-
tography,” in Column Watch. Ronald E. Majors. June, p. 476.

“A Picture Is Worth a Thousand Words,” in LC Troubleshooting. Kasper Pedersen and John W. Dolan. February, p. 136.

“Selectivity in Reversed-Phase LC Sep-
arations, Part II: Solvent-Strength Selectiv-
ity,” in LC Troubleshooting. John W. Dolan. January, p. 28.

“Selectivity in Reversed-Phase LC Sep-
arations, Part III: Column-Type Selectiv-
ity,” in LC Troubleshooting. John W. Dolan. March, p. 236.

“Selectivity in Reversed-Phase LC Sep-
arations, Part IV: Pressure Selectivity,” in

LC Troubleshooting. John W. Dolan. April, p. 318.
“Troubleshooting Basics, Part III: Reten-
tion Problems,” in LC Troubleshooting. John W. Dolan. December, p. 1046.

METHOD VALIDATION

“Analytical Method Validation: Back to
Basics, Part II,” in Validation View-
point. Michael Swartz and Ira Krull. January, p. 44.

MOBILE PHASES, SOLVENTS, CARRIER GASES

“The Greening of the Chromatography
Laboratory,” in Sample Prep Perspec-
tives. Ronald E. Majors and Douglas
Raynie. February, p. 118.

“Hydrogen Carrier Gas and Vacuum Com-
pensation,” in GC Connections. John V.
Hinshaw. January, p. 36.

“A Rapid and Space-Saving Method for Deter-
mining Melamine in Milk Under Organic
Solvent-Free Conditions. Naoto Furusawa.
February, p. 162.

“Selectivity in Reversed-Phase LC Sep-
arations, Part II: Solvent-Strength Selectiv-
ity,” in LC Troubleshooting. John W.
Dolan. January, p. 28.

MS — THE PRACTICAL ART COLUMN

“Problem Solving in the Chemical Indus-
try,” in MS — The Practical Art. Michael P. Balogh. February, p. 144.

“Testing the Critical Interface: Leachables
and Extractables,” in MS — The Practi-
cal Art. Michael P. Balogh. June, p. 492.

“Visualizing the Chemical Composition of
Complex Samples,” in MS — The Practi-
cal Art. Michael P. Balogh and David
Stranz. September, p. 826.

MULTIDIMENSIONAL CHROMATOGRAPHY

“Highlights of HPLC 2011,” in Column Watch.
Ronald E. Majors. September, p. 802.

“Valves for Gas Chromatography, Part
III: Fluidic Switching Applications,” in GC Connections. John V. Hinshaw.
November, p. 988.

PHARMACEUTICALS AND DRUG MONITORING

Aggregated Singlets for Automated Purifi-
cation Workflow. Bhagyashree A.
Khunte and Laurence Philippe. February,
p. 170.

Analysis of Phenazepam in Whole Blood
Using Solid-Phase Extraction and LC-
Tandem Mass Spectrometry. Albert A.
Elian, Jeffery Hackett, and Michael J.
Telepchak. December, p. 1064.

“Analytical Method Validation: Back to
Basics, Part II,” in Validation View-
point. Michael Swartz and Ira Krull.
January, p. 44.

“Current Applications of UHPLC in Bio-
technology, Part II: Proteins and Gly-
cans,” in Biotechnology Today. I.S.
Krull, A. Rathore, and T. Wheat.
December, p. 1052.

Determination of Clenbuterol-Like Beta-
Agonist Residues in Hair. Wan-hua
Yang, Wen-ting Ling, Qin Feng, and
Gui-liang Chen. July, p. 600.

A Generic Workflow for Achiral SFC Purifi-
cation of Complex Pharmaceutical Mix-
tures. Vivi Lazarescu, Mark J. Mulvihill,
and Lifu Ma. May, p. 438.

Generous Results with MISER Chromatogra-
phy. Alasdair Matheson. August, p. 683.

“High-Throughput Tools and Approaches for
Development of Process Chromatography
Steps,” in Biotechnology Today. Anurag
S. Rathore, Rahul Bhambure, and Ira S.
Krull. March, p. 252.

“HPLC Systems and Components Intro-
duced at Pittcon 2011: A Brief Review,” in
Innovations in HPLC. Michael
Swartz. May, p. 414.

Laser Diode Thermal Desorption Tandem
Mass Spectrometry for Simultaneous
Quantitation of Metformin and Sitagliptin in Mouse and Human Dried
Blood Spots. John G. Swales, Richard
T. Gallagher, Mark Denn, Raimund M.
Peter, and Nick Duczak. October, p. 936.

“New Directions in Whole Blood Analysis:
Dried Blood Spot Analysis and Beyond,”
in Sample Prep Perspectives. Ronald E.
Majors. January, p. 14.

On-Line Whole Blood Analysis Using
Microextraction by Packed Sorbent and
LC-MS-MS. Mohamed Abdel-Rehim.
July, p. 612.

“Pulsed Electrochemical Detection: Wave-
form Evolution,” in Innovations in HPLC.
William R. LaCourse. July, p. 584.

A Simple Instrumental Approach for “Supercrit-
ical” Fluid Chromatography in Drug Dis-
covery and Its Consequences for Coupling
with Mass Spectrometric and Light Scatter-
ing Detection. Alberto Pereira, Frank David,
Gerd Vanhoenacker, Claudio Brunelli, and
Pat Sandra. November, p. 1006.

Effective & Efficient Application of GC-MS in Food Testing, Environmental, & Pharmaceutical Applications

ON-DEMAND WEBCAST

Register free at <http://pharmtech.com/optimizing>

EVENT OVERVIEW:

The detection and analysis of potentially harmful volatile organic compounds such as pesticides and residual solvents in foods, pharmaceuticals and the environment are of critical concern. Many countries have set strict regulatory requirements for the detection of these contaminants well below safety threshold levels.

To meet these analytical goals requires highly sensitive and selective methods to effectively measure these compounds. These analyses are further complicated by a large and ever expanding list of compounds to screen for, as well as sometimes very difficult and complex sample matrices to test from.

In this presentation, the application of a new GC-MS platform and its resulting performance to a number of applications such as pesticide testing in a series of food and water samples, as well as residual solvent analysis in pharmaceuticals and nutritional supplements will be covered in great detail. The results from these studies indicate that this new GC-MS system capable of delivering results necessary to meet regulatory requirements in terms of performance, reliability and robustness.

Presenter

Ed George
Applications Manager
Bruker Daltonics Inc.

Moderator:

Laura Bush
Editorial Director
LCGC North America

KEY LEARNING OBJECTIVES:

- To learn about the performance characteristics of a new GC-MS platform and how it meets the requirements for accurate analysis of volatile organic compounds
- To learn some of the latest methods for pesticide residue analysis in Food and Water samples
- To learn the latest methods in residual solvent analysis for pharmaceutical and nutritional products

WHO SHOULD ATTEND:

- Analysts in Food Testing Laboratories
- Analysts in Environmental Testing Laboratories
- Pharmaceutical Development Scientists and Managers
- Analytical Product QC Scientists
- Process Development Scientists
- Analytical Chemists in Chemistry Support Groups

Presented by

Sponsored by

For questions, contact Jamie Carpenter at jcarpenter@advanstar.com

"Still a Young Technology, Chiral Chromatography Makes Big Strides in Pharma," in *The History of Chromatography*. Pilar Franco. February, p. 156.

"Testing the Critical Interface: Leachables and Extractables," in *MS — The Practical Art*. Michael P. Balogh. June, p. 492. *Trace Metabolic Profiling and Pathway Analysis of Clomazone Using LC-MS-MS and High-Resolution MS*. Wei Zou, Hagai Yasuor, Albert J. Fischer, and Vladimir V. Tolstikov. September, p. 860.

PREPARATIVE AND PROCESS-SCALE CHROMATOGRAPHY

"High-Throughput Tools and Approaches for Development of Process Chromatography Steps," in *Biotechnology Today*. Anurag S. Rathore, Rahul Bhambure, and Ira S. Krull. March, p. 252.

PROTEINS, PEPTIDES, ENZYMES

"Biotechnology Highlights from Israna-lytica," in *Biotechnology Today*. Ira S. Krull, Anurag S. Rathore, and Simion Kreimer. June, p. 502.

"Current Applications of UHPLC in Biotechnology, Part I: Peptide Mapping and Amino Acid Analysis," in *Biotechnology Today*. I.S. Krull, A. Rathore, and Thomas E. Wheat. September, p. 838.

"Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans," in *Biotechnology Today*. I.S. Krull, A. Rathore, and T. Wheat. December, p. 1052.

"High-Throughput Tools and Approaches for Development of Process Chromatography Steps," in *Biotechnology Today*. Anurag S. Rathore, Rahul Bhambure, and Ira S. Krull. March, p. 252.

"HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review," in *Innovations in HPLC*. Michael Swartz. May, p. 414.

REGULATORY ISSUES

"Analytical Method Validation: Back to Basics, Part II," in *Validation Viewpoint*. Michael Swartz and Ira Krull. January, p. 44.

REVERSED-PHASE CHROMATOGRAPHY

Aggregated Singletons for Automated Purification Workflow. Bhagyashree A. Khunte and Laurence Philippe. February, p. 170.

"Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans," in *Biotechnology Today*. I.S. Krull, A. Rathore, and T. Wheat. December, p. 1052.

Determination of Phenylurea Herbicides in Tap Water and Soft Drink Samples by HPLC-UV and Solid-Phase Extraction. Manpreet Kaur, Ashok Kumar Malik, and Baldev Singh. April, p. 338.

"Ghost Peak Investigation in a Reversed-Phase Gradient LC System," in *LC Troubleshooting*. Silvia Sadikin, Dee Dee Zhang, Roger Inloes, and Sanjeev Redkar. May, p. 394.

"HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review," in *Innovations in HPLC*. Michael Swartz. May, p. 414.

"New Chromatography Columns and Accessories at Pittcon 2011: Part I." Ronald E. Majors. March, p. 218.

A Rapid and Space-Saving Method for Determining Melamine in Milk Under Organic Solvent-Free Conditions. Naoto Furusawa. February, p. 162.

"Selectivity in Reversed-Phase LC Separations, Part II: Solvent-Strength Selectivity," in *LC Troubleshooting*. John W. Dolan. January, p. 28.

"Selectivity in Reversed-Phase LC Separations, Part III: Column-Type Selectivity," in *LC Troubleshooting*. John W. Dolan. March, p. 236.

"Selectivity in Reversed-Phase LC Separations, Part IV: Pressure Selectivity," in *LC Troubleshooting*. John W. Dolan. April, p. 318.

Trace Metabolic Profiling and Pathway Analysis of Clomazone Using LC-MS-MS and High-Resolution MS. Wei Zou, Hagai Yasuor, Albert J. Fischer, and Vladimir V. Tolstikov. September, p. 860.

SAMPLE PREP PERSPECTIVES COLUMN

"The Greening of the Chromatography Laboratory," in *Sample Prep Perspectives*. Ronald E. Majors and Douglas Raynie. February, p. 118.

"Hollow Fiber Liquid-Phase Microextraction in the Three-Phase Mode — Practical Considerations," in *Sample Prep Perspectives*. Astrid Gjelstad, Hamidreza Taherkhani, Knut Einar Rasmussen, and Stig Pedersen-Bjergaard. December, p. 1038.

"New Directions in Whole Blood Analysis: Dried Blood Spot Analysis and

Beyond," in *Sample Prep Perspectives*. Ronald E. Majors. January, p. 14.

"Prevention Is Better than Cure: An Alternative Approach in the Sample Preparation of Complex Samples," in *Sample Prep Perspectives*. Precious Sibiya, Ewa Cukrowska, and Luke Chimuka. November, p. 970.

SAMPLE PREPARATION

Aggregated Singletons for Automated Purification Workflow. Bhagyashree A. Khunte and Laurence Philippe. February, p. 170.

Analysis of Phenazepam in Whole Blood Using Solid-Phase Extraction and LC-Tandem Mass Spectrometry. Albert A. Elian, Jeffery Hackett, and Michael J. Telepchak. December, p. 1064.

"The Greening of the Chromatography Laboratory," in *Sample Prep Perspectives*. Ronald E. Majors and Douglas Raynie. February, p. 118.

"Hollow Fiber Liquid-Phase Microextraction in the Three-Phase Mode — Practical Considerations," in *Sample Prep Perspectives*. Astrid Gjelstad, Hamidreza Taherkhani, Knut Einar Rasmussen, and Stig Pedersen-Bjergaard. December, p. 1038.

Improving the Efficiency of Fatty Acid Methyl Ester Preparation Using Automated Sample Preparation Techniques. Rebecca A. Veeneman. July, p. 594.

Laser Diode Thermal Desorption Tandem Mass Spectrometry for Simultaneous Quantitation of Metformin and Sitagliptin in Mouse and Human Dried Blood Spots. John G. Swales, Richard T. Gallagher, Mark Denn, Raimund M. Peter, and Nick Duczak. October, p. 936.

"New Chromatography Columns and Accessories at Pittcon 2011: Part II," in *Column Watch*. Ronald E. Majors. April, p. 300.

"New Directions in Whole Blood Analysis: Dried Blood Spot Analysis and Beyond," in *Sample Prep Perspectives*. Ronald E. Majors. January, p. 14.

On-Line Whole Blood Analysis Using Microextraction by Packed Sorbent and LC-MS-MS. Mohamed Abdel-Rehim. July, p. 612.

"Prevention Is Better than Cure: An Alternative Approach in the Sample Preparation of Complex Samples," in *Sample Prep Perspectives*. Precious Sibiya, Ewa Cukrowska, and Luke Chimuka. November, p. 970.

A Rapid and Space-Saving Method for Determining Melamine in Milk Under Organic Solvent-Free Conditions. Naoto Furusawa. February, p. 162.

SIZE-EXCLUSION CHROMATOGRAPHY

“Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans,” In Biotechnology Today. I.S. Krull, A. Rathore, and T. Wheat. December, p. 1052.

The Effect of SEC Column Arrangement of Different Pore Sizes on Resolution and Molecular Weight Measurements. Bruce Kempf, Roy Eksteen, and Howard G. Barth. August, p. 668.

“New Chromatography Columns and Accessories at Pittcon 2011: Part I. Ronald E. Majors. March, p. 218.

SOLID-PHASE EXTRACTION

An Emerging Leader: One Year Later. Megan Evans. February, p. 196.

Analysis of Phenazepam in Whole Blood Using Solid-Phase Extraction and LC-Tandem Mass Spectrometry. Albert A. Elian, Jeffery Hackett, and Michael J. Telepchak. December, p. 1064.

Analysis of Psilocybin and Psilocin in Urine Using SPE and LC-Tandem Mass Spectrometry. Albert A. Elian, Jeffery Hackett, and Michael J. Telepchak. September, p. 854.

Determination of α -Amanitin in Human Serum by Solid-Phase Extraction Coupled with HPLC-UV. Zhi Zhou, Min Cao, Liping Zhou, Xiongjun Zuo, and Youwen Tang. August, p. 672.

Determination of Phenylurea Herbicides in Tap Water and Soft Drink Samples by HPLC-UV and Solid-Phase Extraction. Manpreet Kaur, Ashok Kumar Malik, and Baldev Singh. April, p. 338.

On-Line Whole Blood Analysis Using Microextraction by Packed Sorbent and LC-MS-MS. Mohamed Abdel-Rehim. July, p. 612.

Why All C18 Phases Are Not Equal. Craig A. Perman and Michael Telepchak. June, p. 516.

STANDARDS

Establishing USP Rebaudioside A and Stevioside Reference Standards for the *Food Chemicals Codex*. Yi Dang, Jeffrey Moore, Gloria Huang, Markus Lipp, Barbara Jones, and James C. Griffiths. May, p. 430.

STATIONARY PHASES FOR LC

“Highlights of HPLC 2011,” in Column Watch. Ronald E. Majors. September, p. 802.

HILIC-MS Sensitivity without Silica. Luisa Pereira. March, p. 262.

Why All C18 Phases Are Not Equal. Craig A. Perman and Michael Telepchak. June, p. 516.

SUPERCritical FLUID CHROMATOGRAPHY

A Generic Workflow for Achiral SFC Purification of Complex Pharmaceutical Mixtures. Vivi Lazarescu, Mark J. Mulvihill, and Lifu Ma. May, p. 438.

“HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review,” in Innovations in HPLC. Michael Swartz. May, p. 414.

“New Chromatography Columns and Accessories at Pittcon 2011: Part II,” in Column Watch. Ronald E. Majors. April, p. 300.

A Simple Instrumental Approach for “Supercritical” Fluid Chromatography in Drug Discovery and Its Consequences for Coupling with Mass Spectrometric and Light Scattering Detection. Alberto Pereira, Frank David, Gerd Vanhoeacker, Claudio Brunelli, and Pat Sandra. November, p. 1006.

“A Systematic Study of Achiral Stationary Phases Using Analytes Selected with a Molecular Diversity Model,” in Column Watch. Ray McClain and Matt Przybycien. October, p. 894.

SUPPLEMENT: CURRENT TRENDS IN MASS SPECTROMETRY

Advanced Structural Mass Spectrometry for Systems Biology: Pulling the Needles from Haystacks. Jeffrey R. Enders, Cody R. Goodwin, Christina C. Marasco, Kevin T. Seale, John P. Wikswo, and John A. McLean. July, p. 18.

Analytical Strategies in the Development of Generic Drug Products: The Role of Chromatography and Mass Spectrometry. Arindam Roy and Srinivasa Gorla. October, p. 29.

Comparison of Extracts from Dry and Alcohol-Steamed Root of *Polygonatum kingianum* (Huang Jing) by Sub-2- μ m-LC-TOF-MS. Kate Yu, Baiping Ma, HeShui Yu, Liping Kang, Jie Zhang, Yue Gao, and Alan Millar. March, p. 30.

Comprehensive Analysis of Persistent Organic Pollutants in Complex Matrices Using GC with High-Performance TOF-MS. David E. Alonso, Joe Binkley, and Kevin Siek. July, p. 48.

Creating a High-Throughput LC-MS-MS System Using Common Components. Lance Heinle and Gary Jenkins. October, p. 16.

Determining High-Molecular-Weight Phthalates in Sediments Using GC-APCI-TOF-MS. Frank David, Pat Sandra, and Peter Hancock. May, p. 42.

Food Metabolomics: Fact or Fiction? Leon Coulier, Albert Tas, and Uwe Thissen. May, p. 34.

High-Definition Screening for Boar Taint in Fatback Samples Using GC-MS. Torsten Haas, Peter Boeker, Alun Cole, and Gerhard Horner. July, p. 38.

High-Throughput Quantitative Analysis of Vitamin D Using a Multiple Parallel LC-MS System Combined with Integrated On-Line SPE. Adrian M. Taylor and Michael J.Y. Jarvis. May, p. 12.

25-Hydroxyvitamin D₂/D₃ Analysis in Human Plasma Using LC-MS. Phil Koerner and Michael McGinley. March, p. 8.

Imaging Mass Spectrometry: Current Performance and Upcoming Challenges. Pierre Chaurand. July, p. 30.

Mass Spectrometry Advances Fossilomics. John M. Asara. March, p. 18.

Mass Spectrometry in Analytical Lipidomics. Luis Cuadros-Rodriguez, Alegría Carrasco-Pancorbo, and Natalia Navas Iglesias. July, p. 8.

Mass Spectrometry of Organic Molecules and Laser-Induced Acoustic Desorption: Applications, Mechanisms, and Perspectives. Alexander Zinovev and Igor Veryovkin. July, p. 24.

Matrix-Assisted Laser Desorption-Ionization Imaging Mass Spectrometry for Direct Tissue Analysis. J.D. Pallua, G. Schaefer, L.K. Bittner, C. Pezzei, V. Huck-Pezzei, S.A. Schoenbichler, S. Meding, S. Rauser, A. Walch, M. Handler, M. Netzer, M. Osl, M. Seger, B. Pfeifer, C. Baumgartner, H. Lindner, L. Kremsler, B. Sarg, H. Klocker, G. Bartsch, G.K. Bonn, and C.W. Huck. October, p. 21.

Metabolomics Workflows: Combining Untargeted Discovery-Based and Targeted Confirmation Approaches for Mining Metabolomics Data. Theodore Sana, Steve Fischer, and Shane E. Tichy. March, p. 12.

A New Path to High-Resolution HPLC-TOF-MS—Survey, Targeted, and Trace Analysis Applications of TOF-MS in the Analysis of Complex Biochemical Matrices. Jeffrey S. Patrick, Kevin Siek, Joe Binkley, Viatcheslav Artaev, and Michael Mason. May, p. 18.

On- and Off-Line Coupling of Separation Techniques to Ambient Ionization Mass Spectrometry. Li Li and Kevin Schug. October, p. 8.

Probing Aqueous Surfaces by TOF-SIMS. Xiao-Ying Yu, Li Yang, Zihua Zhu, James P. Cowin, and Martin J. Iedema. October, p. 34.

Responding to Data Analysis and Evaluation Challenges in Mass Spectrometry-Based Methods for High-Throughput Proteomics. Laurence M. Brill. March, p. 36. Review of the 59th Annual ASMS Conference. Megan Evans. July, p. 54.

A Sensitive, Specific, Accurate, and Fast LC-MS-MS Method for Measurement of Ethyl Glucuronide and Ethyl Sulfate in Human Urine. Shuguang Li, Jeff Layne, Sky Countryman, and Michael McGinley. July, p. 42.

Single Multipoint Calibration Curve for Discovery Bioanalysis. Benjamin Begley and Michael Koleto. May, p. 8.

Time-Resolved SRM Analysis and Highly Multiplexed LC-MS-MS for Quantifying Tryptically Digested Proteins. Richard G. Kay, James W. Howard, and Steve Pleasance. March, p. 24.

Why Use Signal-To-Noise As a Measure of MS Performance When It Is Often Meaningless? Greg Wells, Harry Prest, and Charles William Russ IV. May, p. 28.

SUPPLEMENT: DEFENSE AND HOMELAND SECURITY

Advances in Spectroscopy for Detection and Identification of Potential Bioterror Agents. Eric W. Fisher. April, p. 29.

Detecting Explosives by Portable Raman Analyzers: A Comparison of 785-, 976-, 1064-, and 1550-nm (Retina-Safe) Laser Excitation. Michael Donahue, Hermes Huang, Carl Brouillette, Wayne Smith, and Stuart Farquharson. April, p. 24.

Detection of Chemicals with Standoff Raman Spectroscopy. Anupam K. Misra, Shiv K. Sharma, Tayro E. Acosta, and David E. Bates. April, p. 18.

Explosives Sensing Using Multiple Optical Techniques in a Standoff Regime with a Common Platform. Alan R. Ford, Rob-

ert D. Waterbury, Darius M. Vunck, Jeremy B. Rose, Thomas B. Blank, Ken R. Pohl, Troy A. McVay, Edwin L. Dottery, Mikella E. Hankus, Ellen L. Holthoff, Paul M. Pellegrino, Steve D. Christesen, and Augustus W. Fountain III. April, p. 6.

Mid-Infrared Vibrational Spectroscopy Standoff Detection of Highly Energetic Materials: New Developments. Samuel P. Hernández-Rivera, John R. Castro-Suarez, Leonardo C. Pacheco-Londoño, Oliva M. Primera-Pedrozo, Nicolas Rey-Villamizar, Miguel Vélez-Reyes, and Max Diem. April, Digital Edition.

Monitoring of Biological Matrices by GC-MS-MS for Chemical Warfare Nerve Agent Detection. Jeffrey M. McGuire, Jr., Edward M. Jakubowski, and Sandra Thomson. April, p. 12.

SUPPLEMENT: RECENT DEVELOPMENTS IN HPLC/UHPLC

Automated Peak Tracking for Comprehensive Impurity Profiling with Chemometric Mass Spectrometric Data Processing. Gang Xue and Lin Zhang. April, p. 40.

Fast Analysis of Third-Generation Cephalosporins in Human Plasma by SPE and HPLC Methods. Imran Ali, Zeid A. Al-Othman, Hassan Y. Aboul-Enein, Kishwar Saleem, and Iqbal Hussain. April, p. 18.

Fast LC for Conventional HPLC Systems. Joseph Helble. April, p. 34.

Improving the Universal Response of Nebulization-Based UHPLC Detection. Philip DeLand, John Waraska, Christopher Crafts, Ian Acworth, Frank Steiner, and Tobias Fehrenbach. April, p. 45.

An LC-IR Hyphenated Approach to Characterize Polymeric Excipients in Pharmaceutical Formulations. William W. Carson, Ming Zhou, and Tom Kearney. April, p. 50.

Recent Developments in HPLC/UHPLC. Michael Swartz. April, p. 8.

A Strategic Approach to the Quantification of Therapeutic Peptides in Biological Fluids. Erin E. Chambers, Kenneth J. Fountain, and Diane M. Diehl. April, p. 24.

Validation of LC-MS-MS Methods for the Determination of Ibuprofen in Miniature Swine Plasma and Synovial Fluid. Lawrence Andrade, Adam Grenier, Amber Awad, and Teresa Pekol. April, p. 10.

THIN-LAYER CHROMATOGRAPHY

Development and Validation of an HPTLC Method for Determination of Aflatoxin B₁. Hegang Gao, Li Chen, Guoshao Pan, and Chunyu Tu. April, p. 348.

“Self-Assembled Nanomaterials for Enhanced Chemical Separations,” in *Column Watch*. Stephanie A. Archer-Hartmann and Lisa A. Holland. May, p. 384.

UHPLC

“Current Applications of UHPLC in Biotechnology, Part I: Peptide Mapping and Amino Acid Analysis,” in *Biotechnology Today*. I.S. Krull, A. Rathore, and Thomas E. Wheat. September, p. 838.

“Current Applications of UHPLC in Biotechnology, Part II: Proteins and Glycans,” in *Biotechnology Today*. I.S. Krull, A. Rathore, and T. Wheat. December, p. 1052.

“HPLC Systems and Components Introduced at Pittcon 2011: A Brief Review,” in *Innovations in HPLC*. Michael Swartz. May, p. 414.

“Method Translation in Liquid Chromatography,” in *Column Watch*. Ronald E. Majors. June, p. 476.

“Troubleshooting Basics, Part II: Pressure Problems,” in *LC Troubleshooting*. John W. Dolan. September, p. 818.

VALIDATION

VIEWPOINT COLUMN

“Analytical Method Validation: Back to Basics, Part II,” in *Validation Viewpoint*. Michael Swartz and Ira Krull. January, p. 44.

VALVES

“Valves for Gas Chromatography: Fundamentals,” in *GC Connections*. John V. Hinshaw. March, p. 246.

“Valves for Gas Chromatography, Part II: Applications,” in *GC Connections*. John V. Hinshaw. July, p. 576.

“Valves for Gas Chromatography, Part III: Fluidic Switching Applications,” in *GC Connections*. John V. Hinshaw. November, p. 988.

For more information on this topic,
please visit
www.chromatographyonline.com

PRODUCT RESOURCES

HPLC columns

The XSelect HSS Cyano and HSS PFP columns from Waters are designed to offer scientists an alternative to traditional C18 column chemistries. The columns reportedly offer more control over the resolving power of HPLC separations, reducing time and method development costs. **Waters Corporation**, Milford, MA. www.waters.com

Centrifuge tubes

UCT's Enviro-Clean PAH-certified centrifuge tubes are designed for performing PAH analysis using QuEChERS, AOAC, or other methods that require the use of 50-mL centrifuge tubes. The model ECPA-HFR50CT polypropylene tubes are supplied with plug-seal caps. **UCT, Inc.**, Bristol, PA. www.unitedchem.com

Automated headspace analyzer

The Versa automated headspace analyzer from Teledyne Tekmar is designed for traditional static headspace analysis. The analyzer includes a 20-position autosampler, built-in pressure control, an automated leak check and benchmark function, a method optimization mode, and sample heating to 200 °C. **Teledyne Tekmar**, Mason, OH. www.teledynetekmar.com

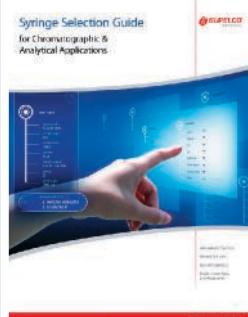
Mass spectrometer

Shimadzu's LCMS-8030 triple-quadrupole mass spectrometer is designed to complement UHPLC systems, offering power and speed in the detection of target analytes. According to the company, the system features multiple reaction monitoring (MRM) transitions that enable data acquisition of as many as 500 channels/s, 15-ms polarity switching, and mass spectrum measurement speeds of 15,000 u/s. The instrument reportedly accelerates ions out of the collision cell by forming a pseudo-potential surface, producing high-efficiency collision-induced dissociation (CID) and high-speed ion transport. **Shimadzu Scientific Instruments, Inc.**, Columbia, MD; www.ssi.shimadzu.com

HPLC-UHPLC columns

Aeris core-shell HPLC–UHPLC columns from Phenomenex are designed for the analysis of proteins and peptides. The Widepore columns (3.6-µm pores) reportedly are optimized for the separation of intact proteins and polypeptides and are available in three selectivities: XB-C18, XB-C8, and C4. The Peptide columns (3.6- and 1.7-µm pores) are available in the XB-C18 selectivity and are intended for the separation of low-molecular-weight peptides and for peptide mapping. **Phenomenex, Inc.**, Torrance, CA. www.phenomenex.com

SPE cartridge columns and plates


SPE cartridge columns and 96-well plates from Thermo Fisher Scientific are designed for high-throughput sample preparation for drugs-of-abuse testing. The Servo cartridge columns and plates are intended for total drug screening and specific testing for THC, opiates, amphetamines, PCP, and cocaine. The Servo+ cartridge columns and plates are designed to provide greater selectivity, higher loading capacity, and increased robustness.

Thermo Fisher Scientific, Waltham, MA. www.thermoscientific.com/servo

Syringe selection guide

Supelco's 44-page syringe selection guide is designed to help users choose the correct syringe for a given application. The guide lists autosampler, manual, and gastight syringes, including color-coded and digital syringes. The guide also includes a syringe selection table. **Supelco/Sigma-Aldrich**, St. Louis, MO. www.sigmapelrich.com/syringes

Reversed-phase UHPLC column

Agilent's Zorbax RRHD 300SB-C18 1.8-µm column for UHPLC separations is a rapid resolution, high definition silica reversed-phase column. According to the company, the column is suited for higher-order reversed-phase characterization of intact proteins and protein digests. The column reportedly is stable at pH values as low as 1 and at temperatures as high as 90 °C. **Agilent Technologies**, Santa Clara, CA. www.agilent.com

Products • Services • Equipment
Training • Career Opportunities

FROM

LC|GC
north america

QBD (QUALITY BY DESIGN):
VOLS I AND II COMBO **\$299.90**

QbD (Quality by Design): A systematic approach to product and process design and development, compiles the best content from BioPharm International and Pharmaceutical Technology to provide valuable insight into the topic and assist you in making the business case for QbD based on the criteria decision makers need to evaluate initiatives and related technology.

ELEMENTS OF BIOPHARMACEUTICAL
PRODUCTION SERIES, THIRD EDITION

Led by Dr. Anurag Rathore. For anyone involved in or planning to start process development, characterization and/or validation activities.

\$79.95

BioPharm

IMT
Institute of
Manufacturing
Technology

LC|GC
north america

**Pharmaceutical
Technology**

save on these and other educational resources at
www.industrymatter.com | 800.598.6008

industry matter

comprehensive information for professionals

CHROMATOGRAPHY SERVICES

TICOSCEN, Inc. www.ticoscen.com
CHROMATOGRAPHY INSTRUMENT SERVICES
◊ Depot repair of old & new ELSD models ◊ End-user training, seminar & consulting ◊ On-site repair, service & IQ/OQ/PQ ◊ Over 20 years of ELSD experience ◊
ELSD@ticoscen.com (800)617.4610 (301)206.3036

H P L C INSTRUMENTS & SUPPLIES

D-Star Instruments, Inc.

- Affordable HPLC
- Systems and Detectors
- OEM and Private Label

(800) 378-2712 (703) 335-0770
Quality Instrument Design & Manufacturing

SONNTEK **RX**

*Your Prescription for
Quality Research Lamps!*

201-236-9300
www.sonntek.com
sonntek@aol.com

RECRUITMENT

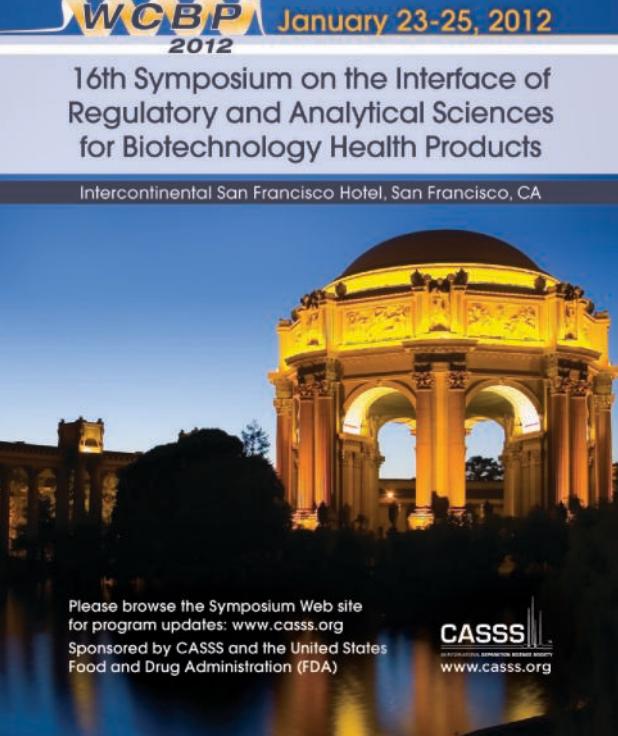
CALIFORNIA

Analytical Chemist

We are seeking a highly motivated, creative, and collaborative scientist with a strong academic background and versatile hands-on expertise to join our Analytical Chemistry team. The successful candidate will contribute to a number of projects supporting optimization and commercialization of current lignocellulosic ethanol process and development of new biofuels technology platforms. Experience in state-of-the-art chromatography techniques preferred.

Apply to BP Biofuels at www.bp.com/careers
Job Number 24010BR.

**Call Tod McCloskey
at 800-225-4569 ext. 2739
to place your ad!
tmccloskey@advanstar.com**


AD INDEX

ADVERTISER	PAGE	ADVERTISER	PAGE
Agilent Technologies	CV2	Optimize Technologies	1034
Bruker Daltonics	1035, 1080	PerkinElmer Corp.	1067
CASSS	1086	Restek Corporation	1043
Dionex	1075	Sensirion AG	1032
EMD Millipore	1033, 1051, 1063	Shimadzu Scientific Instruments	1049, 1053
Hamilton Company	1029	Supelco, Inc.	CV Tip, 1069
Hitachi High Technologies America	CV3	Thermo Fisher Scientific	1047
LGC Ltd.	1057	Waters Corporation	1031, CV4
Microliter	1028	Wyatt Technology Corp.	1027
Microsolv Technology	1032	YMC Co. Ltd.	1037

WCBP 2012 January 23-25, 2012

16th Symposium on the Interface of Regulatory and Analytical Sciences for Biotechnology Health Products

Intercontinental San Francisco Hotel, San Francisco, CA

Please browse the Symposium Web site for program updates: www.casss.org

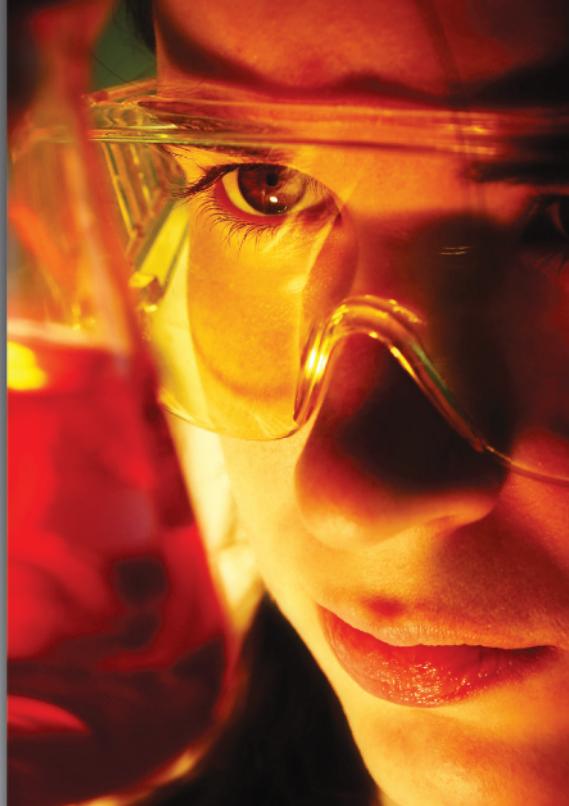
Sponsored by CASSS and the United States Food and Drug Administration (FDA)

CASSS
INTERNATIONAL REGULATORY SCIENCE SOCIETY
www.casss.org

CMC STRATEGY FORUM
ADVANCING BIOPHARMACEUTICAL DEVELOPMENT

EUROPE 2012
23–25 April 2012
Westin Grand Hotel, Berlin, Germany

Forum Co-Chairs:
Brigitte Brake, BfArM, Germany
Brendan Hughes, Pfizer Global Manufacturing, USA
Thomas Schreitmüller, F. Hoffmann-La Roche Ltd., Switzerland


Organized by
CASSS
INTERNATIONAL REGULATORY SCIENCE SOCIETY
www.casss.org

GERMANY

Please browse the Forum Web site for program updates: www.casss.org

High-Performance Preparative LC with Comprehensive Service Package

Hitachi now offers Prep HPLC systems with our unmatched complete care service solution.


Spot Prep System

Integrated preparative solution in one module; including variable volume mixing, automatic injection, 2-channel UV/Vis detector, fraction collector, and control software with GUI.

- Up to 250 mL/min
- 250 bar
- Isocratic, Binary, Ternary, or Quaternary gradient formation
- Optional back flush and/or column switching valve

Prep-36 System

The Prep-36 solvent delivery system is configured with the robust Hitachi LaChrom Elite® HPLC components and EZChrom Elite® control for the ultimate in preparative versatility.

- 1-36 mL/min
- 400 bar
- Isocratic, Binary, Ternary, or Quaternary gradient formation
- Automatic Piston Wash
- Integrated Fraction Collection

Hitachi—the Value Leader in Liquid Chromatography

For more detail, visit www.hitachi-hta.com/hplc. Shop Hitachi online at store.hitachi-hta.com.

Copyright © 2011 Hitachi High Technologies America, Inc. All rights reserved.

Hitachi High Technologies America, Inc.
toll free: 800-548-9001 (US & Canada)
email: Sales-LS@hitachi-hta.com

*LaChrom Elite is a registered trademark of Hitachi High Technologies America, Inc. Hitachi is a registered trademark of Hitachi, Ltd. EZChrom Elite is a trademark of Agilent Technologies, Inc.

HITACHI
Inspire the Next

UPLC

XP: The Missing Link

HPLC

NEW 2.5 μ m eXtended Performance [XP] columns enable exceptional separation performance, robustness and throughput for HPLC assays while enabling a seamless transition path toward future UPLC® adoption.

Discover how to maximize your HPLC productivity at
www.waters.com/XP

- **NEW 2.5 μ m XSelect™ and XBridge™ XP columns**
- **3 particles including silica, hybrid and charged surface hybrid**
- **14 scalable chemistries including C₁₈, Phenyl-Hexyl, C₈, Embedded Polar, HILIC, Amide as well as NEW Cyano and PFP columns**
- **160+ configurations**